Мегаобучалка Главная | О нас | Обратная связь


Когда нет обратной связи



2015-12-13 444 Обсуждений (0)
Когда нет обратной связи 0.00 из 5.00 0 оценок




Получить необходимые сведения об окружающем мире, как мы видели, оказывается, не так просто. Еще большие трудности подстерегают пилота, когда он быстро должен перейти от ориентировки по приборам к непосредственному наблюдению. Тут ему начинает мешать не столько недостаток информации, сколько ее избыток. Из-за этого не раз при полетах в сложных метеорологических условиях у летчиков наблюдались нарушения высшей нервной деятельности, возникало невротическое состояние.

Выполнив задание на высоте 6 тысяч метров, 33-летний летчик Л. вернулся в зону аэродрома и начал пробивать облачность по системе слепой посадки. Самолет успешно преодолел облачную завесу, но затем вдруг взмыл вверх, в облака, после чего опять снизился и, наконец, совершил нормальную посадку. «Что случилось? — спросил его командир. — Почему было нарушено полетное задание?» Побледневший, явно подавленный летчик признался: «Как будто прервались мысли… ничего не помню… как будто потерял сознание, хотя этого и не было». К счастью, подобное состояние оказалось кратковременным, и пилот сумел довести машину до земли. Но все же оно не прошло бесследно: в госпитале он жаловался на плохой сон, был раздражительным, очень болезненно переживал всякие разговоры о случившемся. Однако никакого органического заболевания врачи не обнаружили. И они пришли к выводу, что невротический срыв высшей нервной деятельности возник в связи с тем, что к ограниченному приборами потоку информации присоединилась «избыточная» информация от наземных объектов. Летчик должен был теперь не только правильно определять показания приборов, но и быстро синтезировать новую информацию с полученной ранее в единый образ. А это требует высокой тренированности и самообладания.

Аналогичные ситуации могут возникнуть и в космическом полете. Например, в теневой части Земли космонавт ориентирует корабль по приборам, а выйдя из «ночи», непосредственно наблюдает объекты на земной поверхности. Для него, как и для летчика, требуется объединение всей информации в цельный образ.

Оператору необходимо также знать о том, насколько правильно он действовал в соответствии с этой информацией. Неведение может вывести человека из строя, вызвать чувство неуверенности в себе. Как-то раз в сурдокамере операторы выполняли задания, руководствуясь определенными сигналами. Но обратной связи не было, и они не знали, верны их решения или нет. Большинство работало спокойно: уверенные в себе и своих действиях, они не волновались за исход проделанной работы. Но одного человека это тяготило, и он просил, чтобы ему сообщили о результатах его деятельности. Не получив ответа, он повторил свою просьбу и, наконец, заявил, что включит аварийную сирену, то есть даст сигнал прекращения опыта. Опыт действительно приостановили. Пришлось разъяснить оператору, что если бы он в чем-либо допускал промахи и нарушал программу эксперимента, ему бы немедленно об этом дали знать. А раз сигнала не было, значит все шло нормально. Оператор успокоился, и повторный опыт не вызвал никаких эмоциональных срывов.

Подобные же трудности возникают, когда нет обратной связи со стороны «машины» и человек не может составить представление о проделанной работе. С этим столкнулся, в частности, участник первого космического полета. Согласно программе после ориентации корабля в расчетное время должна была включиться тормозная двигательная установка, а затем произойти отделение от приборного отсека кабины, которая спускалась на парашюте. Пока автоматика ориентировала корабль, космонавт имел возможность контролировать работу приборов и в крайнем случае перейти на ручное управление. Получал он информацию и о действии тормозной двигательной установки. Но как проходит разделение приборного отсека и спускаемого аппарата, он знать не мог. И хотя этот процесс занимает всего несколько десятков секунд, от него зависит благополучное возвращение на Землю. Вот ощущения, испытанные командиром «Востока-1»: «После того как сработала тормозная двигательная установка, я стал ждать разделения приборного отсека и спускаемого аппарата. Это происходило над Африкой. В это время корабль вращался. В иллюминаторы, которые у меня были открыты, я видел то Землю, то небо. Временами в иллюминатор попадали ослепительно-яркие лучи Солнца. Ожидание было тягостным. Время как будто остановилось. Секунды воспринимались как долгие минуты. Но вот разделение осуществилось, и все пошло своим чередом».

Конфликтные ситуации с приборами знакомы и представителям других операторских профессий. Когда исследовали работу операторов на пультах управления современных электростанций, обнаружили, что даже во время «легких» дежурств, когда персонал электростанций не производит никаких операций, а лишь следит за тем, чтобы не произошло аварийных нарушений, возникает сильное нервное утомление. Окончив смену, операторы не в состоянии заниматься какой-либо умственной деятельностью, становятся раздражительными, плохо спят. Многие ученые поэтому приходят к выводу, что из-за особенностей нервной системы не всякий человек способен овладеть операторской профессией. Вот почему при отборе кандидатов в космонавты учитывают не только физическое здоровье, но и психические возможности для работы в качестве оператора. Как же определяют эти способности?

Естественно, с помощью экспериментов. Вот один из них.

Дается таблица. На ней 49 квадратов, в которых без всякой последовательности чередуются цифры черного (от 1 до 25) и красного (от 1 до 24) цветов. Человеку предлагают называть поочередно то черное, то красное число, причем черные должны идти в возрастающем, а красные — в убывающем порядке. Например: единица — черная, 24 — красная, двойка — черная, 23 — красная и т. д. Задание это — далеко не простое, и того, кто его выполнит безошибочно, можно сравнить с… Наполеоном, который, как говорят, мог сразу заниматься несколькими делами.

Этим же удивлял современников французский психолог Полан, который в 1887 году демонстрировал, как ему удается читать какое-нибудь стихотворение и в то же время писать другое, или, декламируя стихи, письменно выполнять сложные арифметические действия. Что же помогало ему добиваться столь эффективной «производительности труда»? Прежде всего умение мгновенно переключать внимание с одного объекта деятельности на другой. Но в системе «человек — машина» именно это и приходится постоянно делать оператору. Потому-то столь важен эксперимент с черно-красной таблицей.

Как известно, память — это сложный процесс отражения действительности, сохранения запечатленного и воспроизведения или узнавания того, что было ранее воспринято, пережито или совершено. Память бывает оперативной, или кратковременной, и долговременной. О ценности последней говорить не приходится: она составляет фундамент человеческой эрудиции. Развитию этой памяти помогает систематичное накопление знаний. По словам Суворова, «память есть кладовая ума, но в этой кладовой много перегородок и поэтому надобно скорее все укладывать, куда следует». Наполеон же говорил, что все знания содержатся в его голове, как в комоде, и ему достаточно открыть определенный ящик, чтобы извлечь нужные сведения.

Но не менее важна оператору и кратковременная память: она регистрирует происходящие события, связывая их в одну «цепочку» с событиями, только что прошедшими, и подготавливая их связь с непосредственно надвигающимися.

Оператор обязан постоянно помнить, в каком состоянии находился управляемый объект некоторое время назад, что происходит с ним сейчас и что может произойти через определенный промежуток времени.

Когда человек отыскал, например, на таблице черную цифру 18, он должен не забыть, что перед этим назвал красную семерку, а теперь ему предстоит найти красную шестерку. Любопытно, что наибольший процент ошибок приходится на средний этап работы, когда после черной цифры 12 и красной 13 следует назвать 13 черную и 12 красную.

Фактор непрерывности действует во многих операциях, связанных с определенной программой: на производстве, на транспорте, в спорте. В условиях жесткого лимита времени значение оперативной памяти еще более возрастает.

Взять хотя бы создание так называемых «схем предвидения». Прежде чем совершить какое-нибудь действие, человек мысленно представляет, что именно он сделает и каков будет результат. Выполнив задачу, он затем «сличает» этот реальный, конкретный результат с «запроектированным». Дальнейшая деятельность зависит от итогов этого сличения; и если обнаружится «рассогласование», можно будет внести определенные поправки, уточнения.

«Схемы предвидения», механизм возникновения которых полностью еще не изучен, — обязательное «внутреннее» условие всякой операторской, даже не только операторской, деятельности. Однако «схемы» эти оказываются очень чувствительными к помехам — например, к подсказкам.

Вот ученик, хорошо выучивший стихотворение, без запинки декламирует его перед классом. Но попробуйте одновременно с ним произносить те же стихи, но в другом ритме — и он быстро собьется, начнет ошибаться.

Точно так же влияют на летчика неумело подаваемые подсказывающие команды с Земли; пилот путается, когда одновременно нескольким абонентам передаются близкие по значению сообщения и он должен выбрать нужную ему информацию из многих сигналов, большинство которых являются для него лишь помехами.

Чтобы определить, насколько оператор устойчив по отношению к таким помехам, прибегали все к той же черно-красной таблице. Как только оператор подходил к самому трудному участку — к середине таблицы, — диктор начинал читать те же цифры, но в несколько измененном темпе. И те, кто недостаточно «помехоустойчив», сбивались, а то и вовсе прекращали эксперимент.

О том, как может действовать подсказка, говорил еще К. С. Станиславский: «По-моему, тот суфлер хорош, который умеет весь вечер молчать, а в критический момент сказать только одно слово, которое вдруг выпало из памяти артиста; но наш суфлер шипит все время без остановки и ужасно мешает, не знаешь, куда деваться и как избавиться от этого не в меру усердного помощника, который точно влезает через ухо в самую душу. В конце концов он победил меня, я сбился, остановился и попросил его не мешать мне». Но трудности работы в системе «человек — машина» этим отнюдь не исчерпываются.

 

 

Сумасшествие приборов

 

«Робот СПД-13 был уже близко, и его можно было рассмотреть во всех деталях. Его грациозное обтекаемое тело, отбрасывавшее слепящие блики, четко и быстро передвигалось по неровной поверхности Меркурия. Его имя — „Спиди“, „Проворный“ — было, конечно, образовано из букв, составлявших его марку, но оно очень подходило ему. Модель СПД была одним из самых быстрых роботов, которые выпускались фирмой „Ю. С. Роботс“.

— Эй, Спиди! — завопил Донован, отчаянно махая руками.

— Спиди! — закричал Пауэлл. — Иди сюда!

Расстояние между людьми и свихнувшимся роботом быстро уменьшалось… Они уже были достаточно близко, чтобы заметить, что походка Спиди была какой-то неровной — робот заметно пошатывался на ходу из стороны в сторону. Пауэлл замахал рукой и увеличил до предела усиление в своем компактном, встроенном в шлем радиопередатчике, готовясь крикнуть еще раз. В этот момент Спиди заметил их.

Он остановился как вкопанный и стоял некоторое время, чуть покачиваясь, как будто от легкого ветерка.

Пауэлл закричал:

— Все в порядке, Спиди! Иди сюда!

В наушниках впервые послышался голос робота:

— Вот здорово! Давайте поиграем. Вы ловите меня, а я буду ловить вас. Никакая любовь нас не разлучит. Я — маленький цветочек, милый маленький цветочек. Ур-ра!

Повернувшись кругом, он помчался обратно с такой скоростью, что из-под его ног взлетали комки спекшейся пыли. Последние слова, которые он произнес, удаляясь, были: „Растет цветочек маленький под дубом вековым“. За этим последовали странные металлические щелчки, которые, возможно, у робота соответствовали икоте».

 

Этот отрывок взят из научно-фантастического рассказа американского писателя, профессора-биохимика А. Азимова «Я — Робот». Роботы у Азимова нередко действуют как разумные, не только мыслящие, но и чувствующие существа. И это отнюдь не такая уж чистая фантазия. Сейчас в специальной литературе все чаще, характеризуя то или иное электронное устройство, употребляют такие вполне человеческие термины, как «усталость», «тренировка», «поведение». Подобные понятия — вовсе не образные выражения, свидетельствующие о своего рода «машинном анимизме», — они отражают существо явления. Исследовав особенности процессов, ученые установили, что в деятельности «машин» возможны любые непредвиденные случайности, резко меняющие их «поведение». Иногда достаточно небольшого внешнего возмущения, толчка, чтобы через некоторое время в работе автоматического устройства возникло неожиданное, казалось бы, беспричинное отклонение. Эти отклонения, возникающие «сами собой», иногда даже вопреки воздействиям, и позволяют говорить о «поведении» автоматических устройств.

У одного штурмана в полете стал отказывать прибор слепого бомбометания. На земле он казался абсолютно исправным, но едва самолет набирал определенную высоту, прибор «объявлял забастовку». Штурман нервничал, раздражался. Особенно досадно было то, что, когда самолет снижался до какого-то уровня, прибор вновь начинал работать, и, приземлившись, штурман бессилен был доказать его «виновность». Поведение штурмана показалось настолько необычным, что его поместили в госпиталь и дважды показывали психиатру. Неисправность устранили лишь тогда, когда прибор «поймали с поличным на месте преступления», сфотографировав его в тот момент, когда он отказывался работать. А штурман признан здоровым и годным к летной работе.

Возможность неожиданных реакций приборов и автоматических систем приходится особенно учитывать в космических полетах. Ведь межпланетные корабли будут насыщены электронными самонастраивающимися системами, то есть системами, которые, получив информацию, станут искать оптимальный режим работы с учетом изменяющихся внешних и внутренних условий. Такие системы не предполагают раз и навсегда заданных жестких программ. А следовательно, появится больше шансов, что аппараты будут преподносить сюрпризы. Поэтому космонавты должны знать о возможностях неустойчивого «поведения» электронных устройств и уметь своевременно «диагносцировать» работу прибора или устройства, «сошедшего с ума».

Незнание этих особенностей автоматической техники может обойтись дорого. Оператор перестанет доверять приборам, его нервы подвергнутся опасному испытанию.

Штурмана З., опытного специалиста, направили в госпиталь в связи с неврозом: он стал раздражителен, потерял сон, уставал в полетах. Причем особенно утомляло его учебное бомбометание, которое раньше он выполнял с удовольствием. Выяснилось, что прежде он производил бомбометание на самолетах, не оборудованных автопилотами. К бомбометанию же при включенном автопилоте он относился резко отрицательно, считая, что автопилоты недостаточно надежны и при «плохом поведении» могут завести самолет в такое место, где сбрасывать бомбы невозможно. Сначала штурман не пользовался автопилотом, но затем вынужден был подчиниться дисциплине. Тут-то он и почувствовал огромное нервное напряжение, усталость, начал жаловаться на головную боль и раздражительность. К автопилоту он по-прежнему обращался, но выключал его гораздо раньше, чем это требовалось. Он напоминал мастера, которому дали нежелательного подручного. Сначала тот стремится избавиться от него, но потом, видя что это бесполезно, уходит, хлопает дверью и оставляет все дело на помощника.

Очень часто у летчиков показания приборов вступают в конфликт с их личными ощущениями. Хотя все знают, что приборы обычно не врут, все же бывает нелегко признать свои ощущения ложными.

 

 

Без указателя тяжести

На Земле человек обычно не задумывается над тем, как отыскать «верх» или «низ». Это вещи само собой разумеющиеся. А в космосе? Уже К. Э. Циолковский предполагал, что состояние невесомости изменит восприятие окружающего пространства. В 1911 году он писал: «Верха и низа в ракете, собственно, нет, потому что нет относительной тяжести, и оставленное без опоры тело ни к какой стенке ракеты не стремится, но субъективные ощущения верха и низа все-таки останутся. Мы чувствуем верх и низ, только места их меняются с переменою направления нашего тела в пространстве. В стороне, где наша голова, мы видим верх, а где ноги — низ. Так, если мы обращены головой к нашей планете, она нам представляется в высоте; обращаемся к ней ногами, мы погружаем ее в бездну, потому что она кажется нам внизу. Картина грандиозная и на первый раз страшная; потом привыкаешь и на самом деле теряешь понятие о верхе и низе».

Чтобы понять, как будет ориентироваться космонавт в состоянии невесомости (хотя и кратковременной), ставили такой эксперимент. Космонавт сидел в задней кабине двухместного реактивного самолета, пристегнувшись ремнями к креслу. На участке полета, когда возникала невесомость, летчик накренял машину на 60–65 градусов, а космонавт по радиопереговорному устройству сообщал о своих впечатлениях. И оказалось, что, если глаза открыты, космонавты ориентируются безошибочно; при закрытых же глазах у всех возникали иллюзии: никто не мог точно определить, какой маневр выполнял самолет. Владимир Комаров, например, отмечал: «Пространственная ориентировка затруднялась при выполнении летчиком „горки“ с креном; мне казалось, что мы летим вертикально вверх».

Почему же это происходит?

О положении тела относительно плоскости Земли и о том, как располагаются различные предметы по отношению друг к другу и к самому человеку, сообщают органы чувств — «воспринимающие приборы», направленные как во внешний мир (экстерорецепторы), так и внутрь организма (интерорецепторы).

Зрение, мышцы, суставы, кожа, вестибулярный аппарат — все они передают информацию в мозг, который благодаря этому и позволяет правильно воспринимать пространство.

Одним из основных органов чувств, участвующих в ориентации, является вестибулярный анализатор. Это единая система, состоящая из периферийного воспринимающего аппарата, проводящих нервов и центральной части с ядрами в стволовом отделе мозга и участком клеток в коре полушарий. Воспринимающий аппарат, в свою очередь, подразделяется на полукружные каналы и отолитовый прибор, размещающиеся в височной кости. Три полукружных канала расположены в трех взаимно перпендикулярных плоскостях и заполнены жидкостью — эндолимфой. У начала каждого канальца имеются «кисточки» чувствительных окончаний вестибулярного нерва.

В 1878 году известный петербургский физиолог Е. П. Цион впервые объяснил значение полукружных каналов в формировании человеческих представлений о пространстве.

«Полукружные каналы, — писал он, — суть периферические органы пространственного чувства, то есть ощущения, вызываемые раздражением нервных окончаний в ампулах, служат для образования наших понятий о трех измерениях пространства».

Механизм этих раздражений связан с законами инерции. Когда голова неподвижна или вместе с телом перемещается прямолинейно и равномерно, эндолимфа остается относительно нее неподвижной. Но если голову повернуть или наклонить, жидкость в соответствующих канальцах начинает давить в сторону, противоположную повороту или наклону. Это вызывает раздражение окончаний вестибулярного нерва, и определенная информация поступает в мозг в виде нервных импульсов.

Отолитовый прибор — это, по существу, гравиторецептор, приспособленный для передачи в мозг информации в основном при изменении силы тяжести. Принцип его действия довольно прост. Дно небольшого мешочка покрыто нервными чувствительными клетками, снабженными волосками, на которых в студенистой жидкости как бы лежат кристаллики солей кальция — отолиты. Под действием силы тяжести они давят на окончания вестибулярного нерва. Естественно, при быстром подъеме или спуске давление это меняется. Какие при этом ощущения — хорошо известно людям, пользующимся скоростными лифтами.

Как отолитовый прибор помогает ориентироваться животным, когда меняется направление силы тяжести, показали следующие опыты. Из полости отолитового прибора маленького речного рачка извлекались песчинки — отолиты и заменялись железными опилками. Животное после этого сохраняло правильную ориентацию в пространстве и плавало, как всегда, спинкой вверх. Но стоило экспериментатору поднести магнит, моментально рачок изменял «позу» — в зависимости от силовых линий магнитного поля. Если магнит подносился сверху, рачок переворачивался спинкой вниз, а если сбоку — переворачивался на бок.

Вестибулярный анализатор тесно связан с органами зрения. Если долго кружиться на одном месте, а затем остановиться, человеку покажется в течение какого-то времени, что мир вращается вокруг него. В свою очередь, органы зрения тоже влияют на вестибулярный анализатор.

Однажды летчику предложили посмотреть панорамный кинофильм. Но усадили его в кресло с неустойчивой опорой, на котором до начала сеанса он свободно балансировал, не теряя равновесия. Начался просмотр, и «зритель» чувствовал себя уверенно и спокойно, когда появившийся на экране самолет летел в горизонтальном полете. Но едва самолет накренился и стал выполнять сложные маневры, равновесие летчика быстро нарушилось, и он «завалился» вместе с креслом. Известно также, что некоторые люди, увидев на киноэкране, как раскачивается корабль на волнах, начинают испытывать чувство укачивания, вплоть до тошноты.

Чтобы узнать, изменяется ли информация от полукружных каналов при невесомости, в самолете-лаборатории тоже установили вращающееся кресло. При горизонтальном полете космонавту завязывали глаза и предлагали определить, на сколько градусов повернется кресло, в котором он сидит. То же повторялось и при невесомости. В последнем случае ошибок было гораздо больше.

Сила земного притяжения сыграла определенную роль не только в формировании опорного скелета и мускулатуры живых существ, но и в развитии так называемого «мышечно-суставного чувства» (проприоцептивной чувствительности). Как показал И. М. Сеченов, выполнение любого строго направленного двигательного акта было бы невозможно при закрытых глазах без мышечно-суставных ощущений, или, говоря языком кибернетики, без обратной связи. Информация, поступающая от мышечно-суставного аппарата, который поддерживает тело в определенной позе, дает возможность человеку представить свое положение относительно плоскости Земли.

Немаловажную информацию дает и осязание. В вертикальном положении соответствующие сигналы идут от кожи ступней, в горизонтальном — от кожи спины, и т. д.

«Указателем» направления силы тяжести также являются рецепторы, находящиеся в стенках кровеносных сосудов и воспринимающие давление крови. Если, скажем, человек стоит, то кровь, стремясь вниз, вызывает большее напряжение стенок сосудов нижних конечностей. И тут же в мозг поступают соответствующие сведения.

В условиях невесомости ни один из органов чувств, кроме зрения, не дает полной и точной информации о положении тела в пространстве. Это и понятно: ведь все известные нам рецепторы формировались под воздействием лишь земных факторов, и только глаз развился под прямым влиянием космоса. С. И. Вавилов образно назвал человеческий глаз «солнечным» в том смысле, что он создан, помимо всего прочего, благодаря приспособлению организма к жизненно важным для него световым лучам, идущим из космоса. Именно зрительные ощущения и восприятия стали опорой теоретического мышления в исследованиях вселенной задолго до космических полетов.

Становится понятным, почему космонавты, закрывая глаза, неправильно представляли себе положение самолета. В условиях невесомости отолитовый аппарат либо вообще переставал давать нужную информацию, либо, что еще хуже, снабжал мозг ошибочными сведениями. И тогда у человека появлялись пространственные иллюзии.

 

 



2015-12-13 444 Обсуждений (0)
Когда нет обратной связи 0.00 из 5.00 0 оценок









Обсуждение в статье: Когда нет обратной связи

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (444)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.022 сек.)