Мегаобучалка Главная | О нас | Обратная связь


Регулирование водного режима почв



2016-01-02 720 Обсуждений (0)
Регулирование водного режима почв 0.00 из 5.00 0 оценок




Водные свойства почв

Важнейшими водными свойствами почв является водоудерживающая способность, водопроницаемость и водоподъемная способность. Водоудерживающая способность почвы - свойства почвы удерживать то или иное количество воды, обусловлено действием сорбционных и капиллярных сил. Водопроницаемость - способность почвы воспринимать и пропускать через себя воду. Различают две стадии водопроницаемости – впитывание и фильтрацию. Водоподъемная способность - свойство почвы вызвать капиллярный подъем влаги. Водоподъемная способность определяется агрегатностью, механическим составом и сложением почвы, обусловливающих ее пористость. Степень минерализации грунтовых вод оказывает значительное влияние на скорость капиллярного подъема.

Водный режим почв.

Водным режимом называется совокупность всех явлении поступления влаги в почву, ее передвижения, удержания в почвенных горизонтах и расхода из почвы. Водный баланс представляет собой количественное выражение водного режима почв. Общий запас воды - суммарное ее количество на заданную мощность почвы, выраженное в кубических метрах на 1 га (или мм водяного столба). Полезный запас воды в почве - суммарное количество продуктивной, или доступной растениям, влаги в толще почвогрунта. Чтобы рассчитать полезный запас влаги в почве, нужно вычислить общий запас воды и запас труднодоступной влаги. Последний в почве вычисляют аналогично общему запасу, но вместо полевой влажности по тем же горизонтам берут влажность устойчивого завядания растении (ВЗ):

Разность между ОЗВ и ЗТВ дает количество полезной воды в почве:

ПЗВ = ОЗВ – ЗТВ.

Типы водного режима почв.

Промывной тип водного режима характерен для большинства почв таежно-лесной зоны, влажных субтропических и некоторых других почв. Непромывной, или замкнутый (импермацидный), тип водного режима характерен для большинства степных почв (черноземы, каштановые и др.). Периодически промывной тип водного режима присущ серым лесным почвам, оподзоленным почвам депрессий степной зоны и некоторым другим. Выпотной (экссудатный) тип водного режима характерен для гидроморфных солончаков, пойменных, плавневых и некоторых других почв.

Регулирование водного режима почв

В зоне неустойчивого увлажнения регулирование водного режима направлено на максимальное накопление влаги в почве и на рациональное ее использование. Для задержания снега и талых вод используются стерня, кулисные растения, валы из снега и др. Для уменьшения поверхностного стока воды применяются заблевая вспашка поперек склонов, обвалование, ячеистая обработка почвы и другие приемы. Исключительная роль в накоплении почвенной влаги принадлежит полезащитным лесным полосам. Эффективному использованию влаги, накопленной в почве, способствуют многие агротехнические приемы: поверхностное рыхление почвы весной, закрытие влаги боронованием, послепосевное прикатывание почвы. В пустынно-степной и пустынной зонах основной способ улучшения водного режима – орошение.

4. Топырақты суғару мен мелиорациялаудың теориялық жағдайлары

Мелиорация почв (от лат. — улучшение ) — улучшение свойств почв с целью повышения ее плодородия. Различают: гидротехническую (осушение, орошение, промывка засоленных почв) с целью улучшения физических свойств почв, химическую (известкование, гипсование, внесение химических мелиораторов) и агролесомелиорацию. Мелиорация почвы коренным образом улучшает ее водно-воздушный режим и, следовательно, создает хорошие условия как для образования, так и для активного функционирования гумуса, участия его в процессах, связанных с плодородием почв.

Орошение относится к гидромелиорации, которая представляет собой ряд мер, направленных на долговременное улучшение водного режима почвы с целью повышения её урожайности. Если орошение требуется осуществлять в местности бедной водными запасами, то предварительно следует провести обводнение территории, так как постоянная транспортировка требуемых для орошения объёмов воды была бы чрезвычайно неэффективной и дорогостоящей. С помощью же обводнения обеспечивается поступление воды естественным ходом, что позволяет её использовать в дальнейшем непосредственно в оросительных системах. В целом, орошение применяется в самых различных участках по климатическим условиям. Очевидно, что наибольшая нужда в орошении наблюдается в регионах с жарким сухим климатом (аридный климат), характеризующихся малым количеством осадков

 

К основным способам орошения относится:

· полив по бороздам водой, подаваемой насосом или из оросительного канала;

· разбрызгиванием воды из специально проложенных труб;

· аэрозольное орошение — орошение мельчайшими каплями воды для регулирования температуры и влажности приземного слоя атмосферы;

· подпочвенное (внутрипочвенное) орошение — орошение земель путем подачи воды непосредственно в корнеобитаемую зону;

· лиманное орошение — глубокое одноразовое весеннее увлажнение почвы водами местного стока.

· дождевание — орошение с использованием самоходных и несамоходных систем кругового или фронтального типа.

В задачу орошения входит определение необходимого количества воды, требуемого для проведения оросительных работ с максимальной эффективности. Для этого учитывают как местные климатические условия, так и вид орошаемых растений и требуемые ему условия для максимального произрастания и количества воды в разные периоды роста. Следует знать фазы развития той или иной культуры и обеспечивать требуемые условия для каждой из фаз. Различают поливную норму — количество воды, требуемое сельскохозяйственной культуре на один полив, и оросительную норму — весь объём воды на период орошения. Коэффициентом водопотребления называют количество воды, исрасходованное растениями, на единицу урожая.

 

1. Топырақтардың аниондарды сіңіруі. Топырақтың буферлігі.

Вопрос об адсорбции анионов почвами еще далеко недостаточно разработан. Благодаря развитию знаний об электрокинетических свойствах коллоидов наметились и новые пути изучения адсорбция анионов. Мы знаем теперь, что в почве наряду с отрицательными коллоидами существуют в некотором количестве и коллоиды положительно заряженных коллоидов.

Изучая адсорбцию анионов, следует, очевидно, интересоваться теми условиями, при которых роль положительных коллоидов достаточно ярко выявлено.

Адсорбция анионов в почве зависит от нескольких факторов. Основные из них следующие:

а) особенности самих анионов

б) состав почвенных коллоидов и их электрокинетические свойства

в) реакция среды (РН).

а) Если расположить анионы по возрастающей способности к адсорбции, то получим следующей ряд : CI= Nо3<Po4<OH

Чем больше валентность аниона, тем больше его способность адсорбцоваться на поверхности коллоидов. Исключение составляет только ион ОН, обладающей наибольшей активностью, несмотря на малую валентность. Это можно объяснить тем, что с увеличением валентности аниона уменьшаться диссоциация соединения, образующего двойной слой, а реакция идет в сторону образования наименьшей диссоциованных соединений.

б) Состав коллоидов (их гранул) в большой мере влияет на поглощение анионов,

в) изменение реакции среды влечет за собой изменение потенциала коллоидов, подщелачивание повышает отрицательный потенциал, подкисление положительный, отсюда следует, что кислая реакция среды способствует большей адсорбции анионов, и, наоборот, в щелочной среде, адсорбция анионов ослаблена.

Обычно же хлориды и нитраты почвой не поглощаются, так как эти анионы не образуют трудно растворимых солей, то в почве их ничего не занимает от вымывания. И если No3 обычно полностью захватываются растениями, в процессе питания, то судьбы CI в почвах зависит, прежде всего, от характера водного режима местности, то или иное накопление хлора в почвах возможно лишь в сухом климате, в условиях промывного режима хлора вымывается и уносится в моря и океаны.

В практике сельского хозяйства с отсутствием поглощения Nо3 и хлор необходимо считаться. Так, нитраты (селитра) применяемые в качестве удобрений, вносят как можно ближе и посеву растений для того, чтобы они не успели вымываться и могли быть использованы всходами. Хлор обычно маложелательный компонентов удобрения. Поэтому такие удобрения, как калийная соль, содержащий много хлор следует, вносит в почву заранее.

Ионы SO4 в природных условиях не поглощаются черноземами и горизонтам А - дерновое - подзолистых почв иначе обстоит дело с поглощением анионов солей фосфорной кислоты, благодаря большому значению фосфора в питании растений на поглощении его почвой необходимо остановится особо.

Все различные три почвы, с которыми проводились опыт, удержали большую часть внесенной фосфорной – кислой соли в форме, не переходящей в водную вытяжку. При этом особенно сильное поглощение наблюдается, на красноземе где даже большие дозы фосфора оказались, поглощенными почти, нацело в отличие адсорбции таких ионов NO3 иCI поглощение, ионов фосфорной кислоты почвой представляет собой явление весьма сложное. Фосфат ионы в почве очень редко трех валентны. Диссоциация Н3РО4 как слабая кислота зависит от РН среды. Полностью Н3РО4 диссоцирует лишь при щелочной реакции, а в условиях нейтральной или слабокислой среды при диссоциации образуется ионы НРо4 и Н2РО4.

Ионы PO4 не имеют практического значения в питании растении, тем как при тех значениях РН при которых живут растений, ионов фосфора в растворе почти нет. Большое участие в поглощении анионов фосфорной кислоты принимают реакции химического осаждение. Фосфорная кислота дает с двух и трех валентности катионами нерастворимы или малорастворимые соли.

В почвах с реакцией близкой к нейтральной содержащих карбоната кальция внесенная в почву растворимая соль фосфорной кислоты, как Ca(H2PО4)2 – суперфосфат осаждается в результате реакции, в следующем виде

 

Ca(H2Po4)2+ Ca(HCo3)2 →2 Ca HPO4+ 2 H2CO3 или

<

Са (Н2РО4)2+ 2 Са (НСо3)2→ Са (РО4)2+ 4 Н2 Со3

<

 

Образование более основных фосфатов кальция при реакции близкой к нейтральной, возможно и в отсутствие карбонатов кальция за счет реакции обмена с катионами кальция из диффузного слоя почвенных коллоидов.

Почва / Са+ Са (Н2РО4)2→ почве К /нн + 2 Са НРО4

Н.И. Горбунов указывает на следующие наиболее вероятные способы поглощения анионов фосфатов в почве:

1. Образование малорастворимых фосфатов при взаимодействии растворимых фосфатов с солями почвенного раствора.

2. Образование слаборастворимых фосфатов с катионами кальция и алюминия ППК.

3. Поглощение фосфат ионов в результате взаимодействия с минералами- солями (гипсом, кальцитом, доломитом).

4. Связывание фосфат ионов несиликатными гидроокислами алюминия и железа.

5. Поглощение фосфат - ионов глинистыми и неглинистыми алюмо и феросиликатами.

Поглощение анионов фосфорной кислоты в почве усиливается при кислой реакции и при высоком содержании полуторных окислов. Гумусовые вещества сжигает интенсивность поглощение фосфатов вещества образования с полуторными окислами комплексных алюмо - и железогумосовых соединений.

Поглощение фосфатов почвой имеет положительное и отрицательное значение, так как приводит к накоплению фосфора в почве, но снижает степень его доступности растениям. Поэтому рекомендуется внесение в почву не порошковидных форм фосфорных удобрений, а гранулированных. Особенно необходимо этот прием на кислых почвах, богатых полуторными окислами (подзол, краснозем).

Буферность почв. С процессами ионного обмена связано такое важное свойство почв, как их буферность. Если в почвенный раствор ввести какую-либо соль (химический мелиорант, удобрение), то благодаря процессам ионного об­мена изменение концентрации почвенного раствора по вво­димым ионам не будет соответствовать введенному количе­ству вещества. Таким путем ППК выполняет важную функ­цию регулятора концентрации почвенного раствора. Спо­собность почвы противостоять изменению концентрации почвенного раствора называется буферной способностью поч­вы.

2. Топырақ суларындағы тұздардың шөгу және еру құбылымдарының ерекшеліктері.

Засоленными называются почвы, в профиле которых содержатся легкорастворимые соли в токсичных для сельскохозяйственных растений количествах. К засоленным почвам относятся солончаки, солончаковатые, солончаковые и глубокозасоленные почвы, солонцы, солонцеватые почвы, солоди и осолоделые почвы. Они широко распространены на юго-востоке европейской части России, особенно в Среднем и Южном Поволжье, в Северо-Восточном Предкавказье, на юге Западной и Восточной Сибири, в Якутии, на юге Украины, в пределах Казахстана и Средней Азии. Образование этих почв связано с накоплением легкорастворимых солей в породах и грунтовых водах на бессточных территориях при засушливом климате, преимущественно в пустынях и полупустынях, где испаряемость превышает количество выпадающих осадков. Наибольшая концентрация солей в грунтовых водах пустынь, а наименьшая — в степях и лесостепях. Интенсивность же передвижения солей связана не только с аридными условиями, но и с фильтрационными свойствами почв и пород, с растворимостью солей. Если капиллярная кайма поднимается близко к поверхности почвы, то после испарения минерализованных вод остаются и накапливаются соли. Они накапливаются также с выходом на поверхность засоленныхпород.

Значительное количество легкорастворимых солей может образоваться при извержении вулканов.

Причиной накопления солей может быть и ветер, дующий с моря на сушу и захватывающий капельки воды с высокой концентрацией солей, то есть импульверизация. Возможен эоловый перенос солей с поверхности солончаков на незаселенные территории, а также биологический путь их накопления. Корни солянок достигают соленосных горизонтов, транспортируя соли к поверхности. После отмирания и минерализации надземных частей растений соли накапливаются в поверхностных горизонтах (иногда до 110 кг солей на 1 га за год).

Для подгорных шлейфов характерно намывное засоление поверхностными склоновыми водами, размывающими выходы соленосных пород. В поймах и дельтах рек отмечается пульсирующее засоление, то есть после весеннего паводка происходит вымывание и смывание солей, а в жаркое лето соли подтягиваются к поверхности, засоляя почвы.

В районах орошаемого земледелия значительные площади заняты вторично засоленными почвамивследствие бездренажного орошения, больших потерь на фильтрацию на полях, строительства оросительных каналов без гидроизоляции, применения для орошения минерализованной воды. Такое засоление возможно и при осушении избыточно увлажненных почв с помощью обвалования в дельтах Кубани, Днепра, Буга, Дуная, Волги и Дона, так как после прекращения затопления промывной водный режим изменяется на выпотной, что при минерализации грунтовых вод приводит к образованию засоленных почв. Вторичное засоление возможно при перегрузке пастбищ, так как при уплотнении и уничтожении травянистой растительности увеличивается физическое испарение влаги почвами.

При орошении необходимо знать критическую глубину уровня минерализованных грунтовых вод, то есть такую глубину, выше которой капиллярные соленосные растворы достигают поверхности почв, вызывая соленакопление. Для суглинистых почв в течение вегетационного периода при орошении необходимо поддерживать уровень грунтовых вод в среднем глубже 2,0...2,5 м.

Уровень критической минерализации для грунтовых вод хлоридно-сульфатного типа составляет 2...3г/л, для содовых — 0,7...1,0 г/л.

Засоленные почвы различаются по глубине залегания солевого горизонта, химизму засоления и степени засоления.

При концентрации солей в грунтовых водах выше критического уровня в гидроморфных условиях проявляется солончаковый процесс; капиллярно-восходящие воды вызывают засоление верхних горизонтов почв и гибель растений. Наиболее токсичны для растений в почвах бикарбонаты и карбонаты щелочей, затем хлориды и нитраты щелочей, наименее токсичны сульфаты. В отличие от чистых растворов солей их смеси менее токсичны. По степени вредности для большинства сельскохозяйственных растений легкорастворимые соли можно расположить по убывающему ряду:

Na23 -> NaHCО3 -> NaCl-> NaNО3 -> CaCl2 -> Na24 -> MgCl2 ->MgSО4.

При содовом засолении угнетение растений начинается уже при содержании гидрокарбонатного аниона в горизонте Апах 0,08 % и рН 8,7...9,0, а при 0,1...0,2 % растения погибают. При содержании в почве 0,4...0,8 % солей большинство сельскохозяйственных растений плохо развивается, если солей содержится более 1,5 %, растения не дают продукции, погибают.

Оптимальная концентрация солей в почвенных растворах для орошаемых почв составляет 3...5 г/л. При концентрации более 10...12 г/л растения испытывают сильное угнетение, а около 20...25 г/л — погибают.

3. Топырақтың су балансы

Водным режимом называется совокупность всех явлении поступления влаги в почву, ее передвижения, удержания в почвенных горизонтах и расхода из почвы. Водный баланс представляет собой количественное выражение водного режима почв. Общий запас воды - суммарное ее количество на заданную мощность почвы, выраженное в кубических метрах на 1 га (или мм водяного столба). Полезный запас воды в почве - суммарное количество продуктивной, или доступной растениям, влаги в толще почвогрунта. Чтобы рассчитать полезный запас влаги в почве, нужно вычислить общий запас воды и запас труднодоступной влаги. Последний в почве вычисляют аналогично общему запасу, но вместо полевой влажности по тем же горизонтам берут влажность устойчивого завядания растении (ВЗ):

Разность между ОЗВ и ЗТВ дает количество полезной воды в почве:

ПЗВ = ОЗВ – ЗТВ.

Важной характеристикой водного режима почв является водный баланс, отражающий изменение запасов влаги в почвенном профиле за определенный промежуток времени на основе изучения всех видов поступления и расходования жидкой влаги для заданного слоя почвы. Водный баланс обычно составляется для декады, месяца, вегетационного периода, года. Изучение элементов водного баланса дает представление о закономерностях формирования водного режима почв. Обменные процессы в почвах, связанные с их водным режимом, протекают в едином гидрологическом поле в пределах речных бассейнов. Водосбор любого водотока или водоема — это целостно функционирующая географическая система, управляющая стоком поверхностных, внутрипочвенных и грунтовых вод, а, следовательно, водным балансом почв. Внутрипочвенное перераспределение влаги имеет большое значение в формировании водного режима почв и их лесорастительных свойств. На формах рельефа с расходящимися в плане линиями стекания внутрипочвенных вод распространены зональные почвы нормального увлажнения, в местах схождения линий стекания развиваются гидроморфные почвы с разной степенью увлажненности. По различиям в характере водообмена и его интенсивности в границах водосбора выделяются три закономерно расположенные относительно водотоков зоны водообмена: прирусловая (периодически заливаемая дождевыми водами или водами от снеготаяния), интенсивного водообмена (область максимального дренирования с оптимальными условиями для роста древостоя) и приводораздельная (часто зона близкого от земной поверхности стояния грунтовых вод) — зона слабого водообмена. В разных природных зонах на водосборах наблюдаются пространственно однотипные закономерные изменения в общем характере водного режима почв.

4. Топырақтардағы және жыныстардағы кальций, магний, калий және натрий қосылыстары, олардың мөлшері және ерекшеліктері

Химический состав почвообразующей породы отражает, в известной мере, её гранулометрический и минералогический состав. Песчаные породы, богатые кварцем, состоят преимущественно из кремнезема. Чем тяжелее гранулометрический состав породы, тем больше в ней вторичных минералов, а следовательно, меньше кремнезема, больше полутораокисей алюминия, железа. Почвы наследуют геохимические черты исходного материала почвообразующих пород. На песчаных породах, богатых кварцем, почвы обогащены кремнеземом, на лессе - кальцием, на засоленных породах – солями и т. д. Итак, в почве преобладают окись кремния (SiO2) и органогенные элементы C, H, O, N, P, S, K, Ca, Mg. Последние являются источником питания растений и от их содержания зависит плодородие почвы. Особую роль в питании растений играет N, P и K. Для нормального роста и развития растениям необходимы свет, тепло, вода, воздух и питательные вещества. Все эти условия жизни для растений равноценны и незаменимы. В почвах элементы питания растений находятся в составе минералов, органических и органо-минеральных соединений твердой фазы почв, в почвенных растворах (в основном в ионной форме) и в газовой фазе почв. В результате поглощения питательных элементов растения формируют корневые и надземные массы, которые используются людьми как продукты питания, корм для животных или как сырье для промышленности (клубни картофеля, зерно, лен и т. д.).В почвах содержатся практически все элементы периодической системы д. И. Менделеева, но для питания растениям наиболее необходимы 19 элементов: С, Н, О, N, Р, S, К, Са, Мg, Fе, Мn, Сu, Zn, Мо, В, С1, Nа, Si, Со. Из них 16 элементов, кроме С, Н, О, относятся к минеральным. Углерод, водород и кислород поступают в растения преимущественно в виде СО2, О2 и Н2О. Необходимость натрия, кремния и кобальта не для всех растений установлена. Углерод, водород, кислород и азот называют органогенными элементами, так как в основном из них состоит организм растений. Углерода содержится в среднем 45 % от сухой массы тканей растений, кислорода —42, водорода — 6,5, азота — 1,5 %. Их сумма составляет 95 %. Оставшиеся 5 % приходятся на зольные элементы: Р, S, К, Са, Мg, Fе, Si, Na и др. Они называются так потому, что преобладают в золе растений. Химический состав золы является показателем валового количества усвоенных растениями из почвы зольных элементов питания. Их выражают в оксидах или в элементах по отношению к массе сухого вещества, или к массе золы в процентах.Валовой химический состав растений значительно отличается от валового состава почвы вследствие избирательности растений к поглощению отдельных элементов для формирования урожая. В растениях всегда больше азота, фосфора и калия. В естественных биоценозах питательные элементы, усвоенные растениями и другими живыми организмами, снова возвращаются в почву после их отмирания и перегнивания, поэтому, как правило, обеднения почвы питательными элементами не происходит. Устанавливается их относительное природное равновесие, характерное для разных типов почв. На пахотных же землях после уборки урожая в почву возвращается только часть поглощенных растениями минеральных элементов. Кроме азота и зольных элементов, называемых в агрономической практике макроэлементами, в составе растений присутствуют микроэлементы, содержание которых составляет приблизительно 0,001 % сухой массы тканей (В, Сu, Со, Zn, Мо и др.). Они играют очень важную роль в обмене веществ растительного организма. Валового калия (К в почвах больше, чем азота и фосфора, вместе взятых, — 1,5—2,5 % (30—50 т/га в пахотном слое), что зависит от минералогического, гранулометрического составов и содержания гумуса. Основное количество калия находится в трудно доступных для питания растения формах. Главным источником усвояемого калия служат обменно-поглощенные и водорастворимосолевые его формы. Обменный калий составляет 0,5—1,5 % валового. Растения усваивают 10—20 % калия от его обменных форм. Микроэлементы (бор, марганец, медь, цинк, кобальт, молибден, йод и др.) играют важную биохимическую и физиологическую роль в жизни растений, а также животных и человека. Неблагоприятным является как недостаток микроэлементов в питании, так и их избыток. В почве содержатся также токсичные для растений элементы: хлор, натрий, марганец, алюминий. Повышенное их содержание делает почву засоленной. В небольших количествах в почве представлены радиоактивные элементы, обуславливающие её природную и искусственную радиоактивность. Природная радиоактивность почвы зависит от содержания в ней урана, тория, радия и др. Искусственная радиоактивность вызвана использованием человеком атомной энергии, средств химической защиты и пр.

1. Тұзданған топырақтарды мелиорациялауда жүзеге асатын химиялық және физико-химиялық процесстер.

ль

Химическая мелиорация – система мер химического воздействия на почву для улучшения её свойств и повышения урожайности сельскохозяйственных культур. При химической мелиорации из корнеобитаемого слоя почвы удаляются вредные для сельскохозяйственных растений соли, в кислых почвах уменьшается содержание водорода и алюминия, в солонцах — натрия, присутствие которых в почвенном поглощающем комплексе ухудшает химические, физико-химические и биологические свойства почвы и снижает почвенное плодородие.

Способы химической мелиорации:

· Известкование почв (в основном в нечернозёмной зоне) – внесение известковых удобрений для замены в почвенном поглощающем комплексе ионов водорода и алюминия ионами кальция, что устраняет кислотность почвы;

· Гипсование почв (солонцов и солонцовых почв) – внесение гипса, кальций которого заменяет в почве натрий, для снижения щёлочности;

· Кислование почв (с щелочной и нейтральной реакцией) – подкисление почв, предназначенных для выращивания некоторых растений (например, чая) при внесении серы, дисульфата натрия и др.

К химической мелиорации относят также внесение органических и минеральных удобрений в больших дозах, приводящее к коренному улучшению питательного режима мелиорируемых почв, например песчаных.

К химической мелиорации приходится прибегать в тех случаях, когда необходимо быстро изменить их неблагоприятные для растений свойства, повысить плодородие. Для этого в почву вносят химические соединения, улучшающие или изменяющие ее свойства. В сельском хозяйстве наиболее часто применяют известкование кислых почв и гипсование, а иногда кислование щелочных.

Химическую мелиорацию целесообразно применять и для улучшения свойств солонцовых почв. Солонцовые почвы отличаются крайне неблагоприятными для растений свойствами, обусловленными присутствием в почвенном поглощающем комплексе (ППК) этих почв значительных количеств ионов натрия. Именно повышенное содержание в почве ионов натрия вызывает процесс осолонцевания почв, в результате чего образуются солонцы, обладающие плохими водно-физическими свойствами. Эти почвы отличаются высокой вязкостью, липкостью, сильным набуханием во влажном состоянии и способностью к уплотнению при иссушении, а также слабой физиологической доступностью влаги.

2. Магмалық жыныстар және олардың SiO2 мөлшері бойынша жіктелуі.

В земной коре минералы группируются в естественные ассоциации — горные породы. Выделяют магматические, осадочные и метаморфические породы.

Магматические (изверженные) горные породы. Они образуются при остывании расплавленных магм, поднимающихся из глубин Земли к ее поверхности. Различают глубинные породы, если магма застыла на глубине, и излившиеся, если остывание произошло уже на поверхности. Магматические породы состоят преимущественно из силикатов и алюмосиликатов, наиболее важными компонентами которых являются кремнезем и глинозем. Дальнейшая классификация ведется, прежде всего, в зависимости от содержания в породе кремнезема — ангидрида кремниевой кислоты (табл. 2.9).

 

Таблица 2.9. Деление магматических пород по содержанию диоксида кремния

 

Породы Содержание SiO, % Характерные породы  
      Глубинные Излившиеся
  Ультраосновные Менее 40 Дунит, пироксенит, перидотит  
  Основные 40—52 Габбро Базальт, долерит  
  Средние 52—65 Диорит Андезит  
  Кислые Более 65 Гранит, гранодиорит Дацит, липарит  
 
Состав, строение и условия залегания горных пород зависят от формирующих их геологических процессов, происходящих в определённой обстановке внутри земной коры или на её поверхности. В соответствии с главными геологическими процессами, приводящими к образованию горных пород, среди них различают три генетических типа: магматические, осадочные и метаморфические. Магматические породы образовались непосредственно из магмы (расплавленной массы преимущественно силикатного состава), в результате ее охлаждения и застывания. В зависимости от условий застывания различают интрузивные (глубинные) и эффузивные (излившиеся) горные породы.
               

3. Коллоидтардың пептизациялану үрдісі.

Коллоиды в почве представлены минеральными, органическими и органо-минеральными соединениями. К минеральным коллоидам относят глинистые минералы, коллоидные формы кремнезема и полутораоксиды. Поверхность глинистых минералов может нести отрица­тельный заряд вследствие нарушения связей на краях крис­таллов, изоморфных замещений в сетках тетраэдров и окта­эдров. Отрицательный заряд у кристаллических глинистых минералов не зависит от рН. Коллоиды, несущие только отрицательный заряд, называют ацидоидами, а не­сущие только положительный заряд — базоидами. Органические коллоиды почвы представлены преимущест­венно веществами гумусовой и белковой природы. Кроме того, в почвах могут быть полисахариды и другие соеди­нения, находящиеся в коллоидно-дисперсном состоянии. И те и другие—амфолитоиды, однако у гумусовых ве­ществ вследствие более выраженной кислотной природы более сильно, чем у белков,, проявляются свойства ацидоидов. Базоидные свойства органических коллоидов связаны с наличием в них активных аминогрупп. Для гумусовых коллоидов характерна высокая емкость катионного обме­на, достигающая 400—500 м-экв. на 100 г и более воздушно-сухого препарата.

Органические коллоиды находятся в почве преимущест­венно в осажденном состоянии вследствие связывания с поливалентными катионами (в виде гелей). Их п е п т и з а ц и я, т. е. переход в состояние коллоидного раствора (золя), происходит под влиянием щелочей за счет образо­вания гумусовых солей щелочных металлов. Органо-минеральные коллоиды представлены преиму­щественно соединениями гумусовых веществ с глинистыми минералами и осажденными формами полутораоксидов. По степени сродства к воде различают гидрофиль­ные (высокое сродство) и гидрофобные (низкое сродство) коллоиды. Гидрофобные свойства почвенным коллоидам, проявляющиеся, в частности, в пониженной смачиваемости, могут придавать органические вещества типа липидов, если они покрывают поверхность почвенных частиц. Известно, что гидрофильность почвенных коллои­дов снижается при переосушке торфяных почв. Это умень­шает их смачиваемость и ухудшает водно-физические свойства. Коагуляция и пептизация коллоидов. Коллоиды могут находиться в двух состояниях: золя (коллоидного раствора) и геля (коллоидного осадка). Коагуляцией называется процесс перехода коллоидов из состояния золя в состояние геля. Слипание коллоидов в агрегаты происходит под влиянием электролитов. Коагуляция ацидоидов вызвана катионами электролита, базоидов — анионами. Свертывание (слипание) коллоидов может происходить при взаимодействии противоположно заряженных коллоидных систем. При высушивании или замораживании почвы наблюдаются дегидратация (обезвоживание) гидрофильных коллоидов и повышение концентрации электролита почвенного раствора, что также вызывает коагуляцию коллоидов. При коагуляции коллоидов происходит склеивание элементарных почвенных частиц в комочки, в результате чего улучшаются физические свойства почвы. Коагуляцию вызывают двухвалентные катионы, особенно Са2+. Кальций называют «стражем почвенного плодородия», так как он способствует образованию структуры и уменьшает кислотность почв. Пептизация — это обратный процесс коагуляции, при котором коллоиды переходят из геля в золь. Пептизация происходит при воздействии растворов щелочных солей. Например, под влиянием одновалентного катиона натрия наблюдается усиленная гидратация коллоидов и переход их в состояние золя. При пептизации почвенных коллоидов разрушается ценная структура и ухудшаются свойства почвы. Так, столбчатый горизонт солонцовых почв, насыщенный гидратированными катионами натрия, вовлажном состоянии набухает, а при высыхании растрескивается на крупные отдельности. Роль коллоидов в почве исключительно велика: от содержания коллоидной фракции зависят связность, водопроницаемость, буферность и другие свойства почвы.

 

4. Топырақ бетінен және өсімдіктерден судың булануы.

Испарением называют переход вещества из жидкого или твердого состояния в газообразное. Испарение является одним из основных звеньев в круговороте воды на земном шаре, а также важнейшим фактором теплообмена в растительных и животных организмах.
Скорость испарения с поверхности почвы в первую очередь зависит от ее температуры, а также от влажности воздуха, скорости ветра, содержания воды в почве, ее физических свойств, состояния поверхности и наличия растительности. С увеличением влажности почвы при прочих равных условиях испарение возрастает. Темные почвы сильнее нагреваются солнцем и поэтому испаряют больше воды, чем светлые. Растительность, затеняя почву от солнечных лучей и ослабляя перемешивание воздуха, значительно уменьшает скорость испарения с поверхности почвы.

Величину скорости испарения можно вычислить по зависимости

Формула (доступно при скачивании полной версии учебника)

где К – коэффициент пропорциональности;
Es – упругость насыщения при температуре испаряющей поверхности;
е – фактическая упругость водяного пара в воздухе;
p – атмосферное давление.

Нужно различать фактическое испарение и испаряемость. Испаряемостью называют максимально возможное испарение, не ограниченное запасами влаги. Величина испаряемости характеризует, насколько погода и климат в данной местности благоприятствуют процессу испарения. Для почвы с недостаточным увлажнением величина фактического испарения меньше испаряемости, так как может просто не хватать влаги в почве, которая могла бы испаряться.
Скорость испарения воды растениями определяется в основном теми же факторами, что и скорость испарения с поверхности почвы, но благодаря своим регулирующим системам растения могут экономить воду, уменьшая транспирацию. Однако общий расход воды на транспирацию очень велик. На образование 1 кг сухого вещества растения тратят от 300 до 800 кг воды.
Сумма испарения воды с поверхности почвы и растениями называется суммарным испарением. Суммарное испарение сельскохозяйственных полей обусловлено также мощностью растительного покрова, биологическими особенностями растений, глубиной корнеобитаемого слоя, агротехническими приемами возделывания растений и т.д.

1. М



2016-01-02 720 Обсуждений (0)
Регулирование водного режима почв 0.00 из 5.00 0 оценок









Обсуждение в статье: Регулирование водного режима почв

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (720)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.02 сек.)