Мегаобучалка Главная | О нас | Обратная связь


Молниезащита объекта защиты



2016-01-02 1002 Обсуждений (0)
Молниезащита объекта защиты 0.00 из 5.00 0 оценок




Одной из причин взрыва на мельнице может быть атмосферное электричество – прямые удары молнии, вследствие чего необходима ее отдельная молниезащита.

Молниезащита – комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от возможных взрывов, загораний и разрушений, вызванных электричеством, тепловым или механическим воздействием молний.

Молниезащита объекта

Определяем необходимость выполнения молниезащиты и ее исполнение для здания мельницы IV степени огнестойкости в местности со среднегодовой продолжительностью гроз 50 г/год и типом грунта суглинок с эквивалентным удельным сопротивлением 500 Ом · м.

В соответствии с назначением зданий необходимость выполнения молниезащиты и ее категория, а при использовании стержневых молниеотводов – тип зоны защиты определяют в зависимости от среднегодовой продолжительности гроз в месте нахождения здания, а также от ожидаемого количества поражений его молнией в год.

Согласно РД 32.21.122.87 «Инструкции по устройству молниезащиты зданий и сооружений» [11] для мельницы выполняют молниезащиту III категории. В данном случае в качестве молниеотводов требуется максимально использовать вытяжные трубы, водопроводные башни, и другие возвышающиеся наземные предметы.

2.6.2. Оценка среднегодовой продолжительности гроз
и ожидаемого количества поражений молнией зданий

Среднегодовая продолжительность гроз в часах определяется по утвержденным для некоторых областей региональными картами продолжительности гроз, или по средним многолетним (порядка 10 лет) данным метеостанций, ближайшей от места нахождения здания и сооружения.

Ожидаемое количество поражений в год определяют по формуле:

N = (S + 6 · h) · (L + 6 · h) · n · 10–6,

где S – ширина защищаемого здания, м;

h – наибольшая высота здания или сооружения, м;

L – длина защищаемого здания, м;

n – среднегодовое число ударов молнии в 1 км2 земной поверхности в месте расположения здания.

Ожидаемое количество поражений молнией в год для здания мельницы прямоугольной формы длиной 100 м, шириной 50 м, высотой 8 м определяют:

N = (50 + 6 · 8) · (100 + 6 · 8) · 4 · 10–6 = 0,058016.

Полученное значение показывает, что поражение молнией здания мельницы происходит один раз в 17 лет.

Построение зоны защиты

Защита от прямых ударов молнии здания мельницы III категории с неметаллической кровлей выполняется тросовыми молниеотводами, обеспечивающими зону защиты Б.

Установка молниеприемников и молниеотводов на самом здании мельницы не рекомендуется, поскольку здание IV степени огнестойкости выполнено из сгораемых материалов облегченной конструкции (по взрывозащите). Таким образом, целесообразно выполнить молниезащиту одиночным тросовым молниеотводом.

Зона защиты одиночного тросового молниеотвода приведена на рисунке 2. Она представляет собой двускатную плоскость с приставленными полуконусами на концах. Горизонтальное сечение зоны защиты на высоте защищаемого сооружения hх, представляет собой прямоугольник с приставленными к малым сторонам полукругами радиусом rх. С учетом стрелы провеса троса сечением 35–50 мм2 при известной высоте опор hоп и длине пролета а высота троса определяется:

h = hоп – 2, при а < 120 м;

h = hоп – 3 при 120 < а < 150.

Зона защиты одиночного тросового молниеотвода имеет следующие габаритные размеры.

Высота зоны защиты: h0 = 0,92 · h,.

Радиус зоны защиты на уровне земли: r0 = 1,7 · h.

Для зоны Б высота одиночного тросового молниеотвода при известных значениях высоты здания и половин ширины определяют по формуле:

h = (rх + 1,85 · hх)/1,7.

Расположив опоры у торцов здания, принимают, что радиус зоны защиты на уровне высоты здания rх, равен половине ширины здания:

rх = S/2.

Получаем rх = 50/2 = 25 м, высота тросового молниеотвода h = (25+1,85·8)/1,7 = 23,41 м.

Так как для III категории молниезащиты при установке отдельно стоящих молниеотводов расстояние от них по воздуху и в земле до защищаемого объекта и вводимых в него подземных коммуникаций не нормируется, то расстояние опор от торцов здания принимают равным 5 м. Тогда длина пролета троса а = 100 + 2 · 5 = 110 м.

Исходя из условия: а < 120 м, а = 110 < 120, определяем высоту опор, преобразуя формулу h = hоп – 2:

hоп = 23,41 + 2 = 25,41 м.

Высота зоны защиты hо = 0,92 · 23,41 = 21,53 м.

Радиус зоны защиты на уровне земли r0 = 1,7 · 23,41 = 39,7 м.

Фундаментом и заземлителем одновременно служит конструкция из 4 железобетонных подножников. Защита от заноса высокого потенциала по подземным коммуникациям осуществляется путем их присоединения на вводе в здание к железобетонному фундаменту здания.

Таким образом, определили параметры конструкции молниеотводов:

· высота тросового молниеотвода 23,41 м;

· высота опоры 25,41 м;

· длина пролета троса 110 м;

· высота зоны защиты 21,53 м;

· радиус защиты на уровне земли 39,7 м.

Взрывозащита

Общие положения

Взрывобезопасность предприятий, на которых возможно возникновение взрыва, должна обеспечиваться комплексом профилактических мероприятий и применением систем взрывозащиты производственного оборудования, зданий и сооружений. Профилактика взрывов направлена на предотвращение условий для возникновения взрывоопасных смесей, насколько это допустимо с позиций обеспечения нормального ведения технологических процессов, а также на исключение возможности появления потенциальных источников их зажигания.

Все необходимые требования по взрывопредупреждению на элеваторах и мукомольных заводах должны постоянно уточняться, а мероприятия и средства, обеспечивающие их выполнение, непрерывно совершенствоваться по технической и экономической эффективности. Требования и мероприятия по профилактике взрывов полностью отвечают современным представлениям о взрывопредупреждении на промышленных предприятиях. Однако, как показывает практика эксплуатации предприятий, невозможно полностью исключить ошибки обслуживающего персонала, нарушения правил, случаи нарушения режимов работы оборудования, внезапный выход из строя отдельных узлов, деталей и машин. В связи с этим остаются актуальными вопросы взрывозащиты оборудования, зданий и сооружений. Конкретные требования по взрывозащите для каждой отрасли сформулированы в специальных ведомственных нормативно-технических документах.

Анализ результатов технического расследования аварий показывает необходимость разработки и внедрения ряда технических мероприятий по взрывозащите, не предусматриваемых действующими нормативными документами. Для создания высокоэффективных, экономически приемлемых, надежных и простых в эксплуатации систем взрывозащиты предстоит выполнить в дальнейшем большой объем научно-исследовательских, опытно-конструкторских и проектных работ.

Особое место и значительную часть в этом комплексе работ составят экспериментальные исследования. Это связано не только с тем, что до настоящего времени до конца не изучены механизмы пылевоздушного и гибридного взрыва и его газотермодинамика, нет данных по процессам взрывного горения многих пылевоздушных и пылегазовоздушных смесей, но и с тем, что создание каждого нового устройства или системы взрывозащиты требует экспериментальной отработки и проверки в натуральных условиях.

Обзор способов взрывозащиты, применяемых как в России так и за рубежом, позволяет сформулировать основные направления разработок технических средств взрывозащиты:

· ограничение роста давления взрыва выше допустимого уровня за счет вскрытия проходных сечений для отвода продуктов сгорания из объема защищаемого оборудования, сооружения или помещения;

· подавление процесса взрывного горения на начальной стадии введением в зону взрыва пламегасящих веществ;

· предотвращение распространения пламени и высокотемпературных продуктов взрывного горения по технологических и другим коммуникациям устройством огнепреградителей;

· предотвращение распространения пламени и высокотемпературных продуктов сгорания установкой на магистралях пламеотсекателей.

Отдельная система взрывозащиты, например какого-либо технологического аппарата, может состоять из нескольких различных устройств, предназначаемых для предотвращения повышения давления в зоне взрыва и ограничения распространения продуктов взрывного горения из зоны взрыва в смежные объемы. Как показывают результаты исследований, опыт эксплуатации различных типов систем взрывозащиты, в настоящее время наиболее приемлемы для предприятий по хранению и переработке зерна разработки по первому и четвертому направлениям.

При определении объектов, подлежащих взрывозащите, и решении вопроса о сроках (очередности) обеспечения объекта системой взрывозащиты необходимо провести оценку по следующим показателям:

· возможность возникновения в объеме взрывоопасной смеси при нормальной работе на стационарном режиме, переходных режимах, холостом ходу, в аварийном режиме, после остановки или до включения;

· показатели пожаровзрывоопасности образующейся аэровзвеси – концентрационные и температурные пределы распространения пламени (воспламенения), максимальное давление взрыва, скорость его нарастания и т.д.;

· предельные параметры возможного взрыва в условиях отсутствия систем взрывозащиты – максимальное давление, скорость его нарастания, суммарная энергия (мощность взрыва) по тротиловому эквиваленту или удельному тепловыделению;

· возможность возникновения источника зажигания взрывоопасной смеси в процессе работы оборудования в нормальном и аварийных режимах, попадание его из смежного оборудования, при нарушениях противопожарного режима (привнесенный источник) и т.д.;

· связь рассматриваемого объема со смежными объемами (помещениями, сооружениями, технологическими аппаратами);

· возможность возникновения взрыва в смежных объемах или возможность их разрушения от взрыва в рассматриваемом объеме;

· наличие средств (систем) взрывопредупреждения;

· возможность контроля режима работы обслуживающим персоналом или автоматикой;

· эксплуатационная надежность рассматриваемого объекта;

· масштаб и перспективы применения на предприятиях отрасли;

· роль в производственном процессе (возможность нормальной работы предприятия без рассматриваемого объекта, ограничение работы или невозможность эксплуатации предприятия);

· материальная ценность объекта, сложность восстановления после возможного повреждения взрывом.



2016-01-02 1002 Обсуждений (0)
Молниезащита объекта защиты 0.00 из 5.00 0 оценок









Обсуждение в статье: Молниезащита объекта защиты

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1002)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)