Мегаобучалка Главная | О нас | Обратная связь


Биосинтез ДНК. Репликация



2016-01-05 832 Обсуждений (0)
Биосинтез ДНК. Репликация 0.00 из 5.00 0 оценок




Синтез новой дочерней цепи ДНК происходит на одной из цепей материнской ДНК как на матрице, поэтому последовательность оснований в цепи-матрице определяет последовательность оснований в новой цепи: против аденина в цепи матрицы в дочернюю цепь всегда пристраивается тимин, а против гуанина − цитозин и наоборот. В результате новая цепь ДНК является копией старой, поэтому этот процесс называется репликацией, то есть копированием. Репликация ДНК начинается с того, что её двойная спираль освобождается от гистонов, и обе цепи молекулы расходятся. После этого каждая из материнских цепей будет служить матрицей, на которой пойдёт синтез новой цепи ДНК. Раскручивание начинается в определенной точке ДНК, называемой точкой инициации. Инициация синтеза у простых организмов происходит в одной точке, а у животных в нескольких точках. Та часть молекулы ДНК, которая уже расплелась и в данный момент служит матрицей для синтеза дочерней цепи, называется репликационной вилкой.

Двойная спираль в обычных условиях довольно стабильна. Спаренные основания соединены так прочно, что для разделения двух цепей ДНК в пробирке нужна температура ~90оС, а для того, чтобы спираль раскрутилась, в клетке необходимы специальные ферменты: белки ДНК – геликазы и белки, дестабилизирующие спираль (SSВ-белки). В ходе репликации ферменты перемещаются вдоль молекулы ДНК, при этом расплетаются всё новые участки родительской цепи до тех пор, пока репликационная вилка не дойдёт до точки окончания синтеза – точки терминации. Чтобы расплетённые цепи опять не соединились, каждая цепь связывается с несколькими молекулами дестабилизирующего белка, которые соединяются с одиночными цепями белка, не закрывая нуклеотидных оснований.

Мономерами для новой цепи ДНК являются одиночные дизокси нуклиозидтрифосфаты. В ходе реакции от каждого из них отщепляется пирофосфатный остаток, так как включение каждого мономера в молекулу ДНК требует затраты высокоэнергетических связей.

Способность азотистых оснований молекул различных нуклеиновых кислот узнавать друг друга путём нековалентного взаимодействия называется спариванием оснований. Спаривание оснований лежит в основе механизмов наследственности. Фермент, катализирующий соединения друг с другом свободных нуклеотидов с образованием новой цепи ДНК, называется ДНК-полимеразой. Она присоединяет дезоксирибонуклеозидтрифосфат к ОН-группе на 31 одной из цепей, при этом две концевые фосфатные группы (пирофосфат) отщепляются, а высвобождаемая энергия используется для связи между нуклеотидами. Так как считывание информации происходит от 31-конца цепи к ее 51-концу, то новая цепь растет в направлении 51→31 и антипараллельна цепи-матрице.

Поскольку две цепи родительской ДНК антипараллельны, то только одна из новых цепей может синтезироваться в направлении 51→31. На второй цепи-матрице синтез новой цепи должен был бы идти в направлении 31→51, однако, поскольку не существует фермента, катализирующего полимеризацию нуклеотидов в этом направлении, то и вторая цепь также синтезируется в напрвлении 51→31, но короткими фрагментами, называемыми фрагментами Оказаки по имени ученого, открывшего их. У бактериальной клетки число этих фрагментов достигае 1-2 тысяч, а у клеток эукариот – всего 100-200. Фрагменты потом сшиваются с помощью фермента ДНК-лигазы путем связывания 51-фосфата одного фрагмента с 31-ОН-группой другого, в результате чего образуется непрерывная вторая цепь ДНК.

Цепь ДНК, синтезируется непрерывно и называется лидирующей, а другая, синтезируемая короткими фрагментами − отстающей. Ведущая цепь растёт непрерывно, так как непрерывно работает ДНК-полимераза, а на отстающей цепи этот фермент работает через определенные промежутки времени, когда начинает действоваь РНК-затравка. Она синтезируется из рибонуклеозидтрифосфатов с помощью фермента ДНК-праймазы и состоит у эукариотов из 10 нуклеотидов. РНК-праймазы синтезируются с определенными интервалами на матрице и являются точками инициации синтеза фрагментов Оказаки, предоставляя свою свободную 31-ОН-группу для присоединения первого нуклеотида ДНК. ДНК-полимераза присоединяет один нуклеотид за другим до тех пор, пока не достигнет РНК-затравки, присоединенной к 51-концу предыдущего фрагмента ДНК.

Итак, в результате синтеза новой цепи ДНК происходит репликация (копирование), материнской цепи ДНК и ее удвоение, при этом каждая новая молекула состоит из одной «старой» и одной «новой» полинуклеотидной цепи. Т акая репликация называется полуконсервативной. Периодичность репликации ДНК совпадает с периодичностью митоза, то есть процесса деления клеток, при котором каждая из вновь возникающих клеток получает генетический материал, идентичный исходной клетке.

 

Биосинтез РНК

Синтез РНК на ДНК-матрице называется транскрипцией (переписыванием), происходит в ядре клеток с помощью РНК-полимерозы.

Рибонуклеиновые кислоты содержатся во всех живых клетках виде одноцепочных молекул, которые, как и ДНК, состоят из нуклеотидов, однако в состав нуклеотидов РНК место дезоксирибозы входит рибоза, а вместо тимина − другое пиримидиновое основание − урацил. Отдельные участки нуклеотидной цепи РНК связываются водородными связями.

Синтез белков, информация о строении которых зашифрована в последовательности расположения нуклеотидов в цепи ДНК, происходит на рибосомах, расположенных в цитоплазме. Следовательно, для осуществления этого синтеза необходимо перенести генетическую информацию из ядра в цитоплазму. Таким посредником в синтезе белка является одна из рибонуклеиновых кислот − информационная РНК (иРНК), называемая также матричной РНК (мРНК). В синтезе белка участвуют также транспортные тРНК и рибосомные рРНК.

Нуклеотиды, из которых синтезируются РНК, присоединяются к лидирующей цепи по принципу комплементарности, который имеет место при репликации ДНК, и с помощью РНК-полимеразы соединяются между собой, образуя полинуклеотидную цепь РНК. Количество РНК в каждой клетке зависит от количества синтезируемого белка. Молекулы РНК менее стабильны, чем молекулы ДНК, поэтому именно ДНК используется в качестве хранилища генетической информации.

Информационные РНК

На долю иРНК приходиться 3-5% всех, они имеет самое простое строение − одноцепочная молекула, состоящая из 70-10000 нуклеотидов. При синтезе иРНК на одной из цепей ДНК происходит спаривание оснований так же, как и при воспроизводжстве самой ДНК: присутствие аденина в матричной цени ДНК определяет присоединение урацила к образующейся цепи РНК, а цитозина − присоединение гистидина.

 

Поскольку иРНК образуются непосредственно на цепи ДНК и являются её копией, то информация о последовательности аминокислотных остатков, записанная с помощью нуклеотидных оснований в ДНК превращается в последовательность комплиментарных оснований на молекуле РНК. В этом генетическом коде одной аминокислоте белка соответствует набор 3-х оснований – триплет, расположенных в определённой последовательности. Этот триплет оснований называется кодоном. Четыре основания аденин A, урацил U,гуанин G и цитозин С можно комбинировать 64 способами, и, поскольку эти 64 комбинации используются для кодировки 21-ой аминокислоты, то генетический код является вырожденным, то есть одна аминокислота кодируется несколькими различными комбинациями. Генетические коды для различных аминокислот приведены на рисунке…

Три триплета (UUA, UAG, UGA) кодируют окончание синтеза – терминацию(стоп-кодоны), о один (AUG) кодирует начало синтеза белковой молекулы с метионина.

Длина иРНК зависит от длины полипептидной цепи, которую она кодирует. Поскольку иРНК служит для синтеза белка, то она существует пока идёт синтез (от нескольких минут у бактерий до нескольких дней у млекопитающих).

 

Рибосомные РНК

Рибосомы сами являются белками и содержат 70-80 различных белков. Функции рРНК сводятся к способствованию присоединения иРНК к ферментам, катализирующим процесс образования полипептидной цепи.

Количество рибосом в клетках колеблется от нескольких десятков тысяч у бактерий до миллиона и больше у эукариотов. Гены, кодирующие структуру рРНК, находятся в ядрышке. Все рибосомы состоят из двух фрагментов большого и маленького. Маленький состоит из 21-ого белка разной структуры и одной молекулы РНК массой около миллиона, а большой из 35 различных белков и знчительно большей молекулы рРНК (молекулярная масса ~1000 000).

Большой и маленький фрагмент могут легко отщепляться друг от друга(диссоциировать) и соединяться во время синтеза белка в одну большую частицу (рекомбинировать).

Транспортные РНК

Транспортные РНК участвуют в процессе трансляции в качестве промежуточного звена между нуклеиновыми кислотами и белками. Их функция заключается в том, что они переносят аминокислоты на рибосомы, где идёт синтез белка. Так как многие аминокислоты кодируются несколькими триплетами, то число известных тРНК больше 21-ой, их известно около 60-ти.

тРНК самые короткие из рибонуклеиновых кислот. Они состоят примерно из 80 нуклеотидов, их молекулярная масса сравнительно низка − 25-30 тысяч. Молекулы всех тРНК имеют сходную форму, их цепь изгибается так, что напоминает лист клевера или клена (рисунок). Эта форма поддерживаются водородными связями, возникающими между комплементарными нуклеотидными основаниями цепи. На 51-конце молекулы всегда находится гуанин, а на 31-конце группа ССА, к которой присоединяется аминокислота. Последовательность нуклеотидов в цепи остальной части молекулы разная.

Транспортные РНК должны выбрать из 21-ой аминокислоты свою, перенести ее к рибосоме и расположить в синтезируемой полипептидной цепи в той последовательности, которая закодирована в иРНК. Связывание тРНК со своей аминокислотой происходит с помощью фермента аминоацил-тРНК-лигазы. Этот процесс является активацией аминокислот и происходит в две стадии. Сначала аминокислота реагирует с АТФ, образуя соединение с макроэргической связью −аминоациладенилат.С него аминокислотный остаток переносится на 31-ОН-группу рибозы концевого остатка ССА тРНК, который у всех тРНК одинаков, и при этом отщепляется нуклеотид АМФ и образуется комплекс аминоацил-тРНК (аа-тРНК).Суммарная реакция образования аа-тРНК может быть записана следующим образом:

АМК + тРНК +АТФ → аа-тРНК +Н4Р2О7 + АМФ

 

В вершине листа молекулы тРНК находится участок, состоящий из 3-х нуклеотидов, последовательность которых строго соответствует коду переносимой кислоты. Этот участок является антикодономкодону в молекуле иРНК, который он узнает за счет спаривания оснований путем образования между ними водородных связей при условии, что полинуклеотидные цепи ТРНК и иРНК антипараллельны:

иРНК 51 – U U C – 31 (кодон)

тРНК 31 –А А G – 51 (антикодон)

За счет этих водородных связей тРНК прикрепляется к иРНК.

 



2016-01-05 832 Обсуждений (0)
Биосинтез ДНК. Репликация 0.00 из 5.00 0 оценок









Обсуждение в статье: Биосинтез ДНК. Репликация

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (832)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)