Мегаобучалка Главная | О нас | Обратная связь


Спектральные методы исследования



2016-01-05 4004 Обсуждений (0)
Спектральные методы исследования 0.00 из 5.00 0 оценок




Спектральные методы исследования основаны на использовании явлений поглощения (или испускания) электромагнитного излучения атомами или молекулами определенного вещества.

Частота (длина волны) излучения определяется составом вещества. Интенсивность аналитического сигнала пропорциональна количеству частиц, вызвавших его появление, то есть массе определяемого вещества или компонента смеси.

Спектральные методы анализа дают широкие возможности для наблюдения и исследования соответствующих сигналов в различных областях электромагнитного спектра – рентгеновское и ультрафиолетовое излучение, видимый свет, инфракрасное, а также микро- и радиоволновое излучение.

По источнику и типу аналитического сигнала спектральные методы разделяют на молекулярно-абсорбционную спектрометрию, молекулярно-люминисцентную или флуориметрию, на атомно-абсорбционную и атомно-эмиссионную, а также спектрометрию ядерно-магнитного резонанса и электронно-парамагнитного резонанса.

В молекулярно-абсорбционной спектрометрии исследуют аналитические сигналы в области от 200 до 750 нм (УФ – излучение и видимый свет), вызванные электронными переходами внешних валентных электронов, а также поглощение излучения в ИК – и микроволновой области, связанное с изменением вращения и колебания молекул. Наиболее широкое распространение получил метод, основанный на изучении поглощения в видимой области спектра в интервале длин волн от 400 до 750 нм — фотометрия; а также метод, основанный на поглощении излучения в различных частях инфракрасной области электромагнитного спектра – ИК-спектрометрия, чаще всего используют поглощение излучения в средней (длина волны 2,5 — 25 мкм) и ближней (длина волны 0,8 — 2,5 мкм) ИК-области.

Фотометрический метод количественного анализа основан на способности определяемого вещества, компонента смеси или их окрашенных форм поглощать электромагнитное излучение оптического диапазона. Способность к поглощению зависит от цветности исследуемого вещества. Цветность определяется электронным строением молекулы, обычно ее связывают с наличием в молекуле так называемых хромофорных групп, обусловливающих поглощение электромагнитного излучения веществом в видимой и УФ-областях спектра.

Общая схема выполнения фотометрического определения едина и включает следующие стадии:

· подготовку пробы и переведение определяемого вещества или компонента в раствор, в реакционноспособную, в зависимости от химизма аналитической реакции, форму;

· получение окрашенной аналитической формы определяемого вещества в результате проведения цветной реакции при оптимальных условиях, обеспечивающих ее избирательность и чувствительность;

· измерение светопоглощающей способности аналитической формы, т. е. регистрация аналитического сигнала при определенных условиях, отвечающих его локализации и наибольшей интенсивности.

Промышленностью выпускаются различные приборы молекулярно-абсорбционной спектрометрии — колориметры, фотометры, фотоэлектроколориметры, спектрофотометры и т.д., в которых установлены различные комбинации источников света, монохроматизаторов и рецепторов. Приборы можно классифицировать следующим образом:

· по способу монохроматизации лучистого потока — спектрофотометры, т. е. приборы с призменным или решеточным монохроматором, позволяющие достигать высокой степени монохроматизации рабочего излучения; фотоэлектроколориметры, т. е. приборы, в которых монохроматизация достигается с помощью светофильтров;

· по способу измерения — однолучевые с прямой схемой измерения (прямопоказывающие) и двухлучевые с компенсационной схемой;

· по способу регистрации измерений — регистрирующие и нерегистрирующие.

Инфракрасная спектроскопия – это метод анализа химических соединений, при котором поглощается энергия в пределах инфракрасного излучения (тепловое излучение). ИК-спектроскопию применяют для определения практически любой функциональной группы, идентификации соединений и т.п. Различные молекулы, содержащие одну и ту же атомную группировку, дают в ИК-спктре полосы поглощения в области одной и той же характеристической частоты. Характеристические частоты дают возможность по спектру установить конкретные группы атомов в молекуле и тем самым определить качественный состав вещества и строение молекулы. В общем случае ИК – анализатор представляет собой однолучевой или двухлучевой инфракрасный спектрофотомер, состоящий из трех основных блоков: подготовки пробы, спектрофотометрических измерений, преобразования сигналов и вычислений. В настоящее время разработаны ИК-анализаторы, основанные на работе в ближайшей инфракрасной области спектра 0,8-2,5 мкм (БИК-анализаторы).

Молекулярно-люминисцентная спектрометрия. Метод анализа, основанный на измерении флуоресценции, называется флуориметрией. Флуоресценция (люминисценция – испускание света) обусловлена поглощением веществом света определенной длины волны. Поглощение ультрафиолетового света определенными молекулами с легковозбуждаемыми электронами приводит к флуоресценции в видимой спектральной области. Флуоресценция свойственна относительно небольшому числу соединений (ароматическим соединениям и порфинам). Ряд соединений можно перевести во флуоресцирующие, введя в молекулу флуоресцирующую группу. Основным преимуществом флуориметрии по сравнению с другими абсорбционными методами является высокая селективность, так как флуоресценцией обладает значительно меньшее число веществ. Метод применяют для чувствительного определения очень малых количеств элементов при анализе органических веществ, при определении малых количеств витаминов, гормонов, антибиотиков, канцерогенных соединений и др. Флуориметрию используют для определения микроорганизмов и соматических клеток.

Методика определения микроорганизмов состоит в специальной подготовке пробы, в процессе которой бактерии, содержащиеся в продукте, окрашиваются красителем в ярко-оранжевый цвет, в результате чего бактериальная суспензия приобретает способность флуоресцировать. Интенсивность флуоресценции пропорциональна числу микробов и контролируется электронным способом.

Флуориметрический метод контроля микроорганизмов достаточно универсален, имеет несложное аппаратурное оформление.

В атомной спектроскопии вещества исследуют, переведя их в состояние атомного пара – атомно-абсорбционная спектроскопия или газообразное состояние – атомно-эмиссионная спектроскопия. Метод атомной спектроскопии находит широкое применение при анализе различных видов сырья и пищевых продуктов. Метод позволяет определить около 70 различных элементов; используется для одновременного определения большого числа элементов (многоэлементарный анализ); для серийного анализа, благодаря высокой чувствительности и быстроте.

Атомно-абсорбционная спектрометрия основана на измерении поглощения электромагнитного излучения атомным паром анализируемого вещества. Измеряют фотометрически разность интенсивности излучения до и после прохождения через анализируемый образец. Прибором, позволяющим осуществить метод ААС, является

· атомно-абсорбционный спектрометр, имеющий следующие основные составные части,

· источник света определенной длины волны, характерной для исследуемого металла;

· «абсорбционную ячейку», в которой происходит атомизация пробы;

· монохроматор для выделения узкой части спектра определенной длины волны;

· фотоумножитель, который детектирует, усиливает и измеряет интенсивность результирующего светового потока;

· регистрирующее и записывающее результирующий сигнал устройство.

Источник света испускает поток луча, спектр которого характерен для определяемого элемента. Этот поток фокусируется через абсорбционную ячейку и монохроматор, где выделяется характерная для исследуемого элемента область спектра. Затем поток направляется в фотоумножитель и преобразуется в электрический сигнал. Величина последнего зависит от интенсивности поступающего в фотоумножитель светового потока и регистрируется специальным устройством.

Сравнивая результаты измерений в исследуемой пробе с результатами измерений в стандартных растворах, определяют содержание элемента в пробе.

В качестве источников излучения при определении содержания рассматриваемых металлов, как правило, используют лампы с полым катодом, являющиеся источниками линейных спектров. Катод такой лампы имеет форму полого цилиндра или стакана. Объем лампы заполнен инертным газом (неоном или иногда аргоном). Существуют многоэлементные лампы с полым катодом, например для определения содержания меди и цинка или меди, цинка, свинца и кадмия. Они бывают очень удобны. Их преимуществом является снижение затрат времени на прогрев ламп. Однако такие лампы, как правило, продуцируют излучение более низкой энергии, чем одноэлементные лампы, что в результате приводит к ухудшению чувствительности; могут возникать спектральные помехи.

В атомно-эмиссионной спектрометрии исследуют атомно-эмиссионные спектры, полученные в результате возбуждения атомов в газообразном состоянии.

Для перевода атомов в газообразное состояние и их возбуждения используют плазму, в качестве среды для получения плазмы применяют аргон. Существует два способа получения плазмы. В одном из них возбуждение происходит под действием электрических разрядов между электродами — плазма постоянного тока, а в другом— энергия высокочастотного переменного тока передается газу с по- мощью магнитной индукции — индуктивно-связанная плазма. При этом создаются высокие температуры, благодаря которым большинство атомов переходит в возбужденное состояние. Поглощение энергии такими атомами невозможно, поэтому при переходе из возбужденного состояния в основное происходит эмиссия (испускание) фотонов, интенсивность которой пропорциональна числу возбужденных атомов. Количественное определение элемента производят так же, как в атомно-абсорбционной спектрометрии.

Приборы, позволяющие осуществить метод АЭС,имеют те же основные части, что и атомно-абсорбционный спектрометр.

Спектроскопия магнитного резонанса. Масс-спектроскопия. Спектроскопия ядерного магнитного резонанса (ЯМР)изучает магнитный резонанс, возникающий в результате взаимодействия магнитного момента ядра с внешним магнитным полем. С помощью метода ЯМР можно исследовать ядра с собственным момент количества движения (спин ядра) и связанным с ним магнитным моментом ядра.

Согласно квантовой механике собственный момент количества движения (спин) ядра принимает строго определенные значения. Так как спин ядра является вектором, то он характеризуется величиной и направлением. Во внешнем магнитном поле для спина ядра возможны две ориентации: вдоль и против направления силовых линий внешнего магнитного поля. Каждому значению спина соответствует определенное значение энергии. Переориентация спина ядра с изменением направления сопровождается поглощением энергии DЕ. Такие переходы вызываются воздействием на ядро радиочастотной области электромагнитного спектра. При этом анализируемая система поглощает энергию при строго фиксированных значениях частоты v, т. е. наблюдается явление резонанса. Такое поглощение энергии измеряют экспериментально, DE прямо пропорционально напряженности магнитного поля в месте расположения ядра и определяется как DЕ= hv, где h – постоянная Планка.

Спектроскопия электронного паромагнитного резонанса (ЭПР) изучает магнитный резонанс, возникающий в результате взаимодействия магнитного момента электрона с внешним высокочастотным (микроволновым) магнитным полем. Метод ЭПР служит для исследования внутримолекулярного окружения неспаренных электронов.

Теория магнитного резонанса применима не только к ядрам, но и к электронам, поскольку последние также имеют спин и магнитный момент. В отсутствие внешнего магнитного поля спины электронов беспорядочно ориентированы, а энергия электронов одинакова. В постоянном магнитном поле магнитные моменты электронов ориентированы соответственно направлению внешнего магнитного поля. Электроны с ориентацией спинов вдоль поля находятся на высоком энергетическом уровне, электроны с ориентацией против поля - на низком, более стабильном, уровне. Если на электроны, находящиеся в однородном магнитном поле воздействовать высокочастотным магнитным полем, направление, которого перпендикулярно направлению однородного магнитного поля, то при определенных соотношениях между напряженностью постоянного поля и частотой переменного поля наблюдается резонансное поглощение энергии переменного поля. Оно регистрируется на спектрометре в виде спектра электронного парамагнитного резонанса - ЭПР-спектра.При количественной оценке спектра в качестве основного аналитического параметра используют константу спин-спинового взаимодействия Масс-спектроскопия занимает особое положение среди спектроскопических методов. В строгом смысле слова этот метод не является спектроскопическим, так как вещество при анализе не подвергается воздействию электромагнитного излучения.

Масс-спектроскопия основана на изучении тока от фрагментов ионов, полученных из нейтральных молекул вещества путем воздействия на них пучка электронов.

Вещество, исследуемое методом ядерно-магнитного резонанса,помещают одновременно в два магнитных поля — одно постоянное, а другое радиочастотное. Измерение осуществляют на ЯМР-спектрометре,основными составляющими элементами которого являются: электромагнит (в простых приборах используют постоянный магнит); генератор радиочастотного излучения; датчик, в который помещают пробирку с образцом, электронный усилитель и интегратор, самописец. В ЯМР-методе используют следующие аналитические параметры: химический сдвиг, константа спин-спинового взаимодействия, интенсивность сигнала, время релаксации.

Метод электронного парамагнитного резонанса основан на измерении поглощения веществом энергии внешнего магнитного поля. Метод ЭПР применяют для анализа всех соединений, содержащих неспаренные электроны, независимо от их агрегатного состояния. Область применения определяется конструкцией кюветы. ЭПР является одним из самых чувствительных методов, предел чувствительности составляет10 "моль/л.

Масс-спектрометрия основана на получении ионов из нейтральных молекул путем воздействия на них пучком электронов, обладающих энергией, достаточной для ионизации. При этом, главным образом, образуются положительные ионы, которые могут распадаться на отдельные фрагменты. Регистрируемая завис мость ионных токов от массы отдельных фрагментов называется масс-спектром. Молекула, возбужденная в результате взаимодействия с электроном (с энергией более 10з кДж/моль), распадается с образованием положительного молекулярного иона и электрона (ионизация).

В большинстве случаев молекулярный ион обладает значительной внутренней энергией и быстро распадается далее с образованием заряженных и незаряженных фрагментов (фрагментация).

Осколочные ионы, в свою очередь, могут распадаться с образованием новых фрагментов. В некоторых случаях фрагментация сопровождается перегруппировками. Процесс фрагментации молекулярных ионов происходит до тех пор, пока не образуют ионы, внутренней энергии которых недостаточно для их дальнейшего превращения. Масс-спектрометры работают при высоком вакууме, что сводит к минимуму нежелательные межмолекулярные реакции и, кроме того, благоприятствует внутримолекулярной фрагментации.

Масс-спектр представляет собой спектр линий положительно заряженных ионов. Несмотря на то что реальной связи между масс-спектрометрией и оптической спектрометрией не существует, оба метода называют спектрометрическими из-за формального сходства графических изображений спектров.

Метод масс- спектрометрии применяют в научно-исследовательской практике для идентификации соединений и установления строения неизвестных веществ, точного определения молекулярной массы, определения элементарного состава, анализа следовых количеств биологически активных соединений, определения аминокислотной последовательности пептидов, анализа многокомпонентных смесей и т.п.

Macс -спектральный анализ основан на способности газообразных ионов разделяться в магнитном поле в зависимости от отношения m/е, где m - масса, е - заряд иона. Ионизация молекул в газе происходит под действием потока электронов. По величине m/е определяют массовое число иона, а по интенсивности соответствующего сигнала судят о концентрации ионов.

Качественный масс-спектральный анализ основан на измерении массы ионов. Идентификация масс поводится по положению линии на фотопластинке, которое фиксируют, измеряя расстояние между линиями с известной массой и анализируемой линией.

Количественные измерения в масс -спектрометрии проводят по току, фиксируемому детектором, или по почернению фотопластинки. В первом случае расчеты основаны на том, что пик ионного тока I пропорционален содержанию компонента или его парциальному давлению:

I = kc =cp

Где k, c - коэффициенты пропорциональности; с - концентрация; р - давление.

 



2016-01-05 4004 Обсуждений (0)
Спектральные методы исследования 0.00 из 5.00 0 оценок









Обсуждение в статье: Спектральные методы исследования

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (4004)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)