Мегаобучалка Главная | О нас | Обратная связь


Лекция. Аддитивные техноологии в Российской промышленности



2016-01-26 700 Обсуждений (0)
Лекция. Аддитивные техноологии в Российской промышленности 0.00 из 5.00 0 оценок




AF-технологии – эффективное звено современного производства

Аддитивные технологии (AF – Additive Manufacturing), или технологии послойного синтеза, сегодня одно из наиболее динамично развивающихся направлений "цифрового" производства. Они позволяют на порядок ускорить НИОКР и решение задач подготовки производства, а в ряде случаев уже активно применяются и для производства готовой продукции.

В недалеком прошлом, лет 10–15 назад, аддитивные технологии использовались преимущественно в традиционно технологически продвинутых отраслях – автомобильной, авиационной и аэрокосмической промышленностях, а также в приборостроении и медицине, где тандем "время – деньги" всегда имел особое значение.

В эпоху инновационной экономики время, затраченное на производство товара, является важнейшим фактором успеха или неуспеха бизнеса. Даже качественно произведенный товар может оказаться невостребованным, если рынок к моменту выхода новой продукции уже насыщен подобными товарами компаний-конкурентов. Поэтому все больше направлений промышленности активно осваивают AF-технологии. Все чаще их используют научно-исследовательские организации, архитектурные и конструкторские бюро, дизайн-студии и просто частные лица для творчества или в качестве хобби. Во многих колледжах и университетах аддитивные машины, или, как их часто называют, 3D-принтеры являются неотъемлемой частью учебного процесса для профессионального обучения инженерным специальностям.

Существует множество технологий, которые можно назвать аддитивными, объединяет их одно: построение модели происходит путем добавления материала (от англ. аdd – "добавлять") в отличие от традиционных технологий, где создание детали происходит путем удаления "лишнего" материала.

Классической и наиболее точной технологией является SLA-технология (от Stereolithography Apparatus), или стереолитография, – послойное отверждение жидкого фотополимера лазером.

Существует много видов фотополимерных композиций, поэтому спектр применения прототипов, полученных по SLA-технологии, очень широк: макеты и масштабные модели для аэро- и гидродинамических испытаний, литейные и мастер-модели, дизайн-модели и прототипы, функциональные модели и т. д.

Селективное лазерное спекание – SLS-технология (Selective Laser Sintering), SelectiveLaserMelting) – еще одно важное направление аддитивных технологий.

Здесь строительным (модельным) материалом являются сыпучие, порошкообразные материалы, а лазер является не источником света, как в SLA-машинах, а источником тепла, посредством которого производится сплавление частичек порошка. В качестве модельных материалов используется большое количество как полимерных, так и металлических порошков.

Порошкообразный полиамид применяется в основном для функционального моделирования, макетирования и изготовления контрольных сборок. Полистирол используется для изготовления литейных выжигаемых моделей.

Отдельным направлением является послойное лазерное спекание (сплавление) металлопорошковых композиций. Развитие этого направления AF-технологий стимулировало и развитие технологий получения порошков металлов. На сегодняшний день номенклатура металлических композиций имеет широкий спектр материалов на основе Ni и Co (CoCrMO, Inconel, NiCrMo), на основе Fe (инструментальные стали: 18Ni300, H13; нержавеющая сталь: 316L), на основе Ti (Ti6-4, CpTigr1), на основе Al (AlSi10Mg, AlSi12). Производятся порошки бронз, специальных сплавов, а также драгметаллов – главным образом для нужд дентальной медицины.

Из металлических порошков "выращивают" заготовки пресс-форм, специальные инструменты, оригинальные детали сложной конфигурации, которые затруднительно или невозможно получить литьем или механообработкой, импланты и эндопротезы и многое другое. Уже сейчас при штучном и мелкосерийном производстве зачастую становится экономически выгодным "вырастить" небольшую партию деталей на SLS-машине, чем изготавливать литейную или штамповую оснастку. В сочетании с HIP (Hot Isostatic Pressing – горячее изостатическое прессование) и соответствующей термообработкой такие детали не только не уступают литым или кованым изделиям, но и превосходят их по прочности на 20–30%.

Очень широкие перспективы открываются для еще одной аддитивной технологии – технологии "струйной печати" – InkJet- или PolyJet-технологии. Эта технология предполагает нанесение модельного материала или связующего состава с помощью струйных головок. Особый интерес InkJet-технологии представляют для литейного дела.

Они позволяют "выращивать" непосредственно литейные формы, т. е. "негатив" детали, и исключить стадии изготовления формовочной оснастки – мастер-модели и литейной модели. Компания ExOne (и ее дочернее предприятие ProMetal GmbH) выпускает машины типа S-Max, которые позиционируются не как "прототипирующие машины", а как вполне "рядовое" технологическое индустриальное оборудование, устанавливаемое в общей технологической цепи производства не только опытной, но и серийной продукции. Практически все автомобильные компании мира обзавелись такими машинами. Оно и понятно – с их помощью стало возможным не в разы, а на порядок сократить время прохождения НИОКР по критически важным для автостроителей позициям – литейным деталям: блоки и головки цилиндров двигателей, мосты и коробки передач, деталям, на изготовление которых в традиционном опытном производстве тратились месяцы, а с учетом экспериментальной доводки и подготовки производства – многие месяцы. Теперь конструктор может увидеть свой новый двигатель на испытательном стенде не через полгода, а через две недели после завершения технического проекта.

Сегодня в России существует множество компаний, оказывающих услуги по прототипированию, однако в основном это небольшие предприятия, обладающие одним-двумя недорогими 3D-принтерами, способными выращивать несложные детали. Связано это с тем, что высокотехнологичное оборудование, способное обеспечить высокое качество изделий, стоит дорого и требует для работы и обслуживания квалифицированного, специально обученного персонала. Далеко не каждая компания может себе это позволить, ведь для покупки необходимо четко понимать, каким образом и насколько эффективно это оборудование будет использоваться, будет ли оно загружено работой. Слабостью таких компаний является отсутствие комплексности решения задач. В лучшем случае дело ограничивается оказанием достаточно простой услуги – изготовлением прототипа или модели тем или иным способом. Тогда как AF-технологии – это не только и не столько 3D-принтер, но важная часть 3D-среды, в которой происходит рождение нового продукта – от замысла конструктора до материализации его идей в серийном производстве. Среда, в которой новый продукт создается, "живет", эксплуатируется, ремонтируется вплоть до завершения "жизненного цикла" этого продукта.

Поэтому для полноценного использования AF-технологий нужно создать эту среду: освоить 3D-проектирование и моделирование, CAE- и САМ-технологии, технологии оцифровки и реинжениринга, сопутствующие технологии, включая и вполне традиционные, но переформатированные под 3D-среду. Причем освоить не в отдельно взятом университете или крупной заводе – такие есть промышленностью в целом на всех уровнях – этого нет даже в отдельно взятой, например, авиационной или автомобильной промышленности. Тогда и AF-технологии будут выглядеть не экзотическими изысками, а вполне естественным и эффективным звеном общей 3D-среды создания, производства и жизненного цикла изделия.

Существуют на рынке и крупные компании, обладающие оборудованием высокого уровня, которые, как правило, решают достаточно сложные производственные задачи и оказывают более широкий спектр полезных услуг, сопутствующих прототипированию, способных от начала до конца провести НИОКР и проконтролировать качество работ на каждом этапе. К таким предприятиям можно отнести ФГУП "НАМИ", АБ "Универсал", НПО "Салют", ОАО "НИАТ" (Москва), УМПО (Уфа), НИИ "Машиностроительные Технологии", (СПбГПУ), ОАО "Тушинский

 

 

машиностроительный завод" и ряд других. Однако такой комплексный подход по силам далеко не каждому предприятию, особенно в условиях безучастной позиции со стороны государства.

 

 

В целом ситуация с внедрением AF-технологий в российскую промышленность остается крайне неблагополучной. Россия практически не участвует в международных организациях, оказывающих значительное влияние на развитие AF-технологий в мире.

Рынок аддитивных технологий в России развивается, но происходит это очень медленно, поскольку, чтобы вывести эти технологии на должный уровень, необходима поддержка государства. При должном внимании к внедрению AF-технологий они могут значительно повысить скорость реагирования на потребности рынка и экономическую эффективность многих отраслей промышленности.

 


 



2016-01-26 700 Обсуждений (0)
Лекция. Аддитивные техноологии в Российской промышленности 0.00 из 5.00 0 оценок









Обсуждение в статье: Лекция. Аддитивные техноологии в Российской промышленности

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (700)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)