Мегаобучалка Главная | О нас | Обратная связь


МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ



2018-07-06 548 Обсуждений (0)
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ 0.00 из 5.00 0 оценок




В природе и технике, кроме поступательного и вращательного движений, часто встречается еще один вид механического движения - колебания.

Совершают колебания ветви дерева на ветру и маятник в часах, поршень в цилиндре двигателя внутреннего сгорания и земная кора во время землетрясений, струна гитары и поверхностный слой воды на море. Общий признак колебательного движения во всех этих примерах - точное или приблизительное повторение движения через одинаковые промежутки времени. Механическими колебаниями называют движения тел, повторяющиеся точно или приблизительно через одинаковые промежутки времени.

Свободные и вынужденные колебания. Силы, действующие между телами внутри рассматриваемой системы тел, называют внутренними силами. Силы, действующие на тела системы со стороны других тел, не входящих в эту систему, называют внешними силами.

Свободными колебаниями называют колебания, возникающие под действием внутренних сил. По этому признаку колебания груза, подвешенного на пружине, или шарика на нити (рис. 213) являются свободными колебаниями. Колебания под действием внешних периодически изменяющихся сил называются вынужденными колебаниями. Вынужденные колебания совершают поршень в цилиндре автомобильного двигателя и нож электробритвы, игла швейной машины и резец строгального станка.

Рис. 213

Условия возникновения свободных колебаний. Рассмотрим условия возникновения свободных механических колебаний. Закрепим в лапке штатива один конец стальной пружины, а к другому концу подвесим груз. Груз может находиться в покое при условии равенства по модулю действующих на него противоположно направленных сил: силы тяжести и силы упругости , (рис. 214,а):

.


Рис. 214

Положение, в котором сумма векторов сил, действующих на тело, равна нулю, называется положением равновесия. При смещении груза вверх от положения равновесия из-за уменьшения деформации пружины сила упругости убывает, сила тяжести остается постоянной (рис. 214,б). Равнодействующая F этих сил направлена вниз, к положению равновесия. При смещении груза вниз из положения равновесия из-за увеличения деформации пружины сила упругости возрастает, а сила тяжести остается неизменной (рис. 214,в). Равнодействующая этих сил в этом случае направлена вверх, к положению равновесия.

Если груз поднять выше положения равновесия и затем отпустить, то под действием равнодействующей силы, направленной вниз, груз движется ускоренно до положения равновесия. После прохождения положения равновесия равнодействующая сила уже направлена вверх и поэтому тормозит движение груза, вектор ускорения а изменяет направление на противоположное. После остановки в нижнем положении груз движется ускоренно вверх, к положению равновесия, затем проходит его, испытывает торможение, останавливается, начинает двигаться ускоренно вниз и т.д. - процесс периодически повторяется.

Аналогичные процессы происходят при колебаниях груза, подвешенного на нити.

Рассмотрев различные примеры свободных механических колебаний, можно выделить условия их возникновения:

1) Силы, действующие на тело, или хотя бы одна из них, должны зависеть от координат. В одном определенном положении тела в пространстве, называемом положением равновесия, равнодействующая всех сил, действующих на тело, должна быть равна нулю. При выведении тела из положения равновесия равнодействующая всех сил должна быть отлична от нуля и направлена к положению равновесия.

2) Силы трения, в системе должны быть достаточно малы.

Аналитическое и графическое представление колебаний. Для описания колебаний как процесса, происходящего во времени, используются способы аналитического и графического их представления.

Для аналитического описания колебаний тела относительно положения равновесия задается функция , выражающая зависимость смещения от времени :

.

График этой функции дает наглядное представление о протекании процесса колебаний во времени. Получить такой график можно построением по точкам графика функции в координатных осях (рис. 215).

Рис. 215

Период и частота колебаний. Общим признаком механических колебаний как физического процесса является повторяемость процесса движения через определенный промежуток времени. Миндальный интервал времени, через который происходит повторение движения тела, называется периодом колебаний. Период колебаний (обозначается буквой ) выражается в секундах.

Физическая величина, обратная периоду колебаний, называется частотой колебаний:

(59.1)

Частота определяет число колебаний, происходящих за 1 с. Единица частоты - герц (Гц). 1 Гц = 1 с-1. В физике и технике широко используется понятие циклической частоты. Циклическая частота определяет число колебаний, происходящих за с. Связь между циклической частотой и частотой задается выражением

. (69.2)

Циклическая частота и период колебаний связаны соотношением

. (59.3)



2018-07-06 548 Обсуждений (0)
МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ 0.00 из 5.00 0 оценок









Обсуждение в статье: МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (548)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)