Мегаобучалка Главная | О нас | Обратная связь


ОБРАБАТЫВАЕМОСТЬ МАТЕРИАЛОВ РЕЗАНИЕМ



2018-07-06 6555 Обсуждений (0)
ОБРАБАТЫВАЕМОСТЬ МАТЕРИАЛОВ РЕЗАНИЕМ 4.78 из 5.00 9 оценок




Обрабатываемость материалов резанием - это способность материалов поддаваться обработке резанием или, иначе, комплекс свойств материалов, обеспечивающих (при их обработке резанием) достижение следующих технологических показателей:

1)скорости резания vТ при заданной стойкости Т (например, v60, т.e. скорость резания при стойкости Т= 60 мин);

2)качества обработанной поверхности (шероховатость, наклеп, остаточные напряжения);

3)силы резания и потребляемой мощности;

4)формы стружки, ее транспортабельности и т.д.

Обрабатываемость зависит: от химического состава обрабатываемого материала; его механических и теплофизических свойств; вида обработки резанием; конструкции инструмента и инструментального материала; режима резания; применяемых СОТС и других факторов.

В производственных условиях из перечисленных выше критериев обрабатываемости наиболее часто используют критерий vt -скорость резания при заданной стойкости, по которому определяют производительность обработки данного материала и необходимые затраты для осуществления процесса резания.

Для сравнения обрабатываемости разных материалов часто используют коэффициент обрабатываемости,под которым понимают отношение

,

где - скорость резания при Т = 60 мин, характеризующая обрабатываемость исследуемого материала А; - скорость резания при Т = 60 мин, характеризующая обрабатываемость эталонного материала Б.

За эталон обычно принимают сталь 45 (σв = 650 МПа, 180 НВ), и поэтому для нее коэффициент обрабатываемости Коб = 1 . При получистовом точении стали 45 твердосплавным резцом v60 = 135 м/мин, а резцом из быстрорежущей стали Р18 - v60 = 75 м/мин.

Чем выше значение коэффициента обрабатываемости Коб, тем лучше обрабатываемость материала. По этому коэффициенту для разных металлов можно посчитать v60. Например, при точении твердосплавным резцом аустенитной коррозионно-стойкой стали Коб = 0,5 и тогда v60 =135 • 0,5 = 67,5 м/мин. При точении этой же стали резцом из стали Р18 Коб = 0,3, a v60 =75 • 0,3 = 22,5 м/мин.

Если для данного материала коэффициент обрабатываемости неизвестен, то для его определения необходимо экспериментально найти зависимость «стойкость-скорость» (Т—v).

Далее кратко рассмотрим особенности обрабатываемости основных групп конструкционных материалов, получивших широкое применение в машиностроении.

• 1. Углеродистые и легированные стали

По химическому составу и содержанию легирующих элементов эти стали можно условно разделить на следующие подгруппы: углеродистые стали (стали 20, 40, 45 и др.); низколегированные хромистые, хромоникелевые и другие стали, содержащие углерод в пределах С = 0,2...0,5 % и легирующие элементы (хром, никель, марганец, кремний, вольфрам и молибден), суммарное количество которых достигает 3%; углеродистые инструментальные стали (С = 0,8... 1,2 %); высоколегированные стали с высоким содержанием легирующих элементов.

Обрабатываемость всех углеродистых сталей зависит в основном от содержания в них углерода, с увеличением которого твердость сталей повышается, а скорость резания v60 снижается.

У среднеуглеродистых и низколегированных сталей (С = 0,35...0,55 %) коэффициент обрабатываемости в пределах Коб = 0,7...1,0. Введение в эти стали в небольшом количестве (1... 2 %) легирующих элементов обеспечивает повышение прочности и других механических свойств (предела текучести, относительного удлинения) при небольшом снижении коэффициента обрабатываемости. Обрабатываемость этих сталей может быть улучшена за счет изменения структуры методами дополнительной термообработки (отжиг, нормализация, закалка с последующим отпуском).

Наилучшей обрабатываемостью обладают стали со структурой перлит (феррит+цементит).

Чтобы максимально улучшить обрабатываемость высокоуглеродистых сталей (С > 0,6 %), они должны иметь структуру зернистого перлита, обладающего меньшей истирающей способностью, даже если это ухудшает качество поверхности.

В инструментальных, легированных и быстрорежущих сталях увеличение легирующих элементов всегда приводит к ухудшению обрабатываемости (до Коб = 0,6) и росту шероховатости обработанной поверхности вследствие образования твердых карбидов. При этом, как правило, повышаются предел прочности σв при растяжении и твердость сталей, возрастает сопротивление сталей обработке резанием. Наихудшую обрабатываемость имеют структуры: сорбитообразный перлит, сорбит и троостит после закалки и отпуска. Наилучшей по обрабатываемости структурой инструментальных сталей является зернистый перлит с равномерно распределенными мелкими карбидами после тщательной проковки и сфероидизирующего отжига.

В тоже время конверторные низкоуглеродистые стали обрабатываются лучше, чем выплавленные в мартеновских и электрических печах, так как содержат в больших количествах серу и фосфор. Холоднокатаные стали, содержащие углерод до 0,3 %, обрабатываются лучше, чем горячекатаные, а при содержании углерода С > 0,4% - хуже.

Самой худшей обрабатываемостью обладают высоколегированные коррозионно-стойкие и жаростойкие стали, так как содержат в больших количествах легирующие элементы: хром (15... 18 %), никель (8... 11 %), марганец (1.. .2 %). Иногда в них входят в небольших количествах титан, вольфрам, молибден, ниобий при некотором снижении содержания хрома и никеля. Снижение обрабатываемости этих сталей связано с изменением их механических и теплофизических свойств. Например, жаростойкие (окалино-стойкие) и жаропрочные стали аустенитного класса отличаются высокой упрочняемостью при резании. Некоторые марки сталей в процессе пластического деформирования склонны к структурным превращениям, заключающимся в переходе аустенита в мартенсит. Эти стали, как правило, имеют низкую теплопроводность, что затрудняет отвод теплоты из зоны резания в стружку и заготовку. При этом повышаются температура резания и интенсивность износа инструментов.

Для некоторых марок сталей обрабатываемость улучшают правильно подобранными режимами термообработки (отжиг, закалка).

В целом же в зависимости от химического состава у высоколегированных сталей коэффициент обрабатываемости снижается от Коб = 0,65 (хромистые, коррозионно-стойкие стали) до Коб = 0,3 (хромоникелевые жаростойкие стали).

Еще меньшую обрабатываемость имеют жаропрочные сплавы на никелевой основе с содержанием никеля до 60...80 %, для них Коб = 0,16.. .0,04 (сплавы марок ЖС6К, ЖС3ДК).

Наилучшую обрабатываемость имеют низкоуглеродистые (С < 0,2%) - автоматные стали, применяемые для изготовления деталей на станках-автоматах. Для улучшения обрабатываемости в них вводят небольшие добавки серы (0,2...0,3 %), фосфора (до 0,15 %) и свинца (0,15...0,3 %), которые снижают коэффициент трения и интенсивность износа инструмента (благодаря сере), а также улучшаютдробление стружки (благодаря свинцу, фосфору). За счет этого коэффициент обрабатываемости таких сталей увеличился до Коб=1,5...2,1, производительность обработки возросла в 2 раза, уменьшились силы резания и шероховатость обработанной поверхности. Однако при этом механические свойства автоматных сталей несколько снизились.

• 2. Чугуныприменяют, главным образом, для изготовления корпусных деталей машин методом литья благодаря низкой стоимости материала и высокой технологичности. Чугуны относятся к материалам с относительно низкой прочностью, не испытывающим пластических деформаций в процессе образования стружки. Поэтому силы резания и затрачиваемая при этом мощность ниже, чем при обработке сталей, а из-за малой пластичности чугунов образуется элементная, реже суставчатая стружка, снижающая площадь ее контакта с передней поверхностью инструмента. В результате контактные напряжения возрастают и концентрируются около режущей кромки. Поэтому при обработке чугунов следует применять более прочные однокарбидные сплавы группы ВК.

Температура резания при обработке чугунов ниже, чем при обработке сталей той же твердости, обрабатываемость их также ниже. Это связано главным образом с высоким абразивным действием весьма твердого цементита, что интенсифицирует износ, особенно инструментов из быстрорежущих сталей.

• 3. Титановые сплавыобладают высокими физико-механическими свойствами и широко применяются в авиа- и ракетостроении. Их условно можно разделить на следующие основные группы: 1) повышенной пластичности (σв < 600 МПа); 2) средней прочности (σв = 600 МПа); 3) высокой прочности (σв = 1000... 1500 МПа); 4) жаропрочные (σв = 450... 1250 МПа). При этом, чем выше прочность титанового сплава, тем хуже его обрабатываемость.

В целом титановые сплавы при довольно высокой прочности обладают пониженной пластичностью, обусловленной наличием в их составе алюминия. Теплопроводность титановых сплавов в 17 раз меньше, чем алюминия, а при резании они склонны к упрочнению.

По обрабатываемости титановые сплавы существенно уступают конструкционным сталям. В зависимости от марки сплава коэффициент обрабатываемости Коб титановых сплавов колеблется в пределах от 0,8 (для сплава ОТ4-1) до 0,45 (для сплавов ВТ14, ВТ1 и др.). Поэтому для резания титановых сплавов используют инструментальные материалы высокой прочности: быстрорежущие стали повышенной теплостойкости и однокарбидные твердые сплавы группы ВК. Сплавы, содержащие карбиды титана, для обработки титановых сплавов непригодны из-за химического сродства с обрабатываемым материалом.

• 4. Цветные металлы и сплавы на основе меди и алюминияобладают наилучшей обрабатываемостью по сравнению со сталями. Так, при резании твердосплавными резцами меди марок Ml, М2, МЗ Коб = 4...6, а сплавов алюминия марок АК12 (АЛ2), АК9ч (АЛ4), АМ5 Коб=10...12. Это объясняется низкой прочностью и твердостью этих металлов и их высокой теплопроводностью. Поэтому температура резания низкая, а интенсивность износа мала.

Из-за высокой пластичности меди при ее обработке на низких скоростях силы резания достаточно большие, так как усадка стружки очень велика (К = 6...8 и более). По этой причине чистая медь с высокой электропроводностью считается труднообрабатываемым материалом, особенно при глубоком сверлении, когда имеют место высокая шероховатость обработанной поверхности и плохой стружкоотвод.

Лучшей обрабатываемостью за счет добавки свинца (до 2... 3 %) обладают латуни и свинцовистые бронзы. Поэтому, например, латуни широко применяют для изготовления деталей на станках-автоматах.

При резании алюминиевых сплавов из-за высокой стойкости инструментов скорость резания твердосплавными инструментами достигает 600 м/мин, а инструментами из быстрорежущей стали - 300 м/мин. Только при резании некоторых наиболее прочных алюминиевых сплавов, например силуминов, содержащих 17... 20 % кремния, даже при использовании твердосплавных инструментов приходится снижать скорость резания почти до 100 м/мин из-за высокой твердости частиц кремния (>400 НВ), вызывающих абразивный износ инструмента.

 



2018-07-06 6555 Обсуждений (0)
ОБРАБАТЫВАЕМОСТЬ МАТЕРИАЛОВ РЕЗАНИЕМ 4.78 из 5.00 9 оценок









Обсуждение в статье: ОБРАБАТЫВАЕМОСТЬ МАТЕРИАЛОВ РЕЗАНИЕМ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (6555)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)