Мегаобучалка Главная | О нас | Обратная связь


Построение технической теории - теоретической радиотехники



2019-07-03 237 Обсуждений (0)
Построение технической теории - теоретической радиотехники 0.00 из 5.00 0 оценок




"Телеграфия без проводов" первоначально представляла собой прикладное исследовательское направление электродинамики. Позже она стала рассматриваться как новый раздел (область исследования) электротехники, задача которого заключалась в совершенствовании приема электромагнитных волн, борьбе со всевозможными видами помех, использовании тока высокой частоты. В ранних курсах по радиотехнике еще значительное место занимает электротехническая часть, так как радиотехника пользуется различными стандартными электротехническими устройствами и элементами. Поэтому радиотехнические цепи рассматриваются первоначально как разновидность электротехнических цепей, работающих на токах высокой частоты. В данном случае можно говорить о переносе исходной теоретической схемы и соответствующих ей понятий, представлений и методов анализа из смежной технической теории.

В процессе переработки этой схемы, взятой из электротехники, на основе нового эмпирического материала (иных конструктивных элементов) происходит ее коренное преобразование. Радиотехнические схемы имеют ряд существенных отличий от электротехнических цепей. А это влечет за собой и необходимость изменения их исходной электротехнической модели. Так, для получения токов высокой частоты в радиотехнике стали применяться методы, неизвестные в электротехнике, свободные колебания, не связанные с проводами и совершенно новые приборы и устройства. "Методы измерения силы тока, напряжения и т.д. невозможно было непосредственно заимствовать из тогдашней электротехники. Появлялись совершенно новые устройства новой измерительной техники: измерение частоты или длины волны и логарифмического декремента" [58]. Кроме того, изменяется и масштаб многих электротехнических величин. Радиотехнику приходится учитывать такие величины, которые слишком малы и не представляют интереса при изучении техники медленных изменений электрического тока. Другими словами: достигается соответствие двух слоев технической теории - поточных (описывающих физические процессы, протекающие в радиотехнических устройствах) и структурных (задающих конструктивно-технические параметры этих устройств) схем.

Параллельно разрабатываются частные теоретические модели, такие, как теория усилителей, теория пустотных (ламповых) генераторов переменного тока и т.п., образующих отдельные островки теоретического исследования. Все частные теоретические вопросы, касающиеся конструктивных элементов радиотехнических систем (например, электровакуумных приборов), и более детальное описание конструкции их подсистем (радиоприемников, радиопередатчиков, антенн [59] и т.д.) постепенно выносятся в специальные курсы. В результате выделились некоторые вопросы, представляющие общий интерес для всякого радиотехнического устройства. Частные теоретические схемы перерабатываются и систематизируются с одновременным их обобщением.

Проблема введения однородных идеальных объектов радиотехнической теории, позволяющих установить соответствие ее функциональной, поточной и структурной схем, на уровне традиционных электротехнических элементов решалась относительно просто.

Во-первых, уже в электротехнике было установлено однозначное соответствие между всеми этими идеальным объектами (емкостью, индуктивностью, сопротивлением) и конструктивными элементами реальных электрических схем (конденсаторами, катушками индуктивности, резисторами). Во-вторых, цепь, построенная из идеальных объектов, с помощью специально разработанных в электротехнике приемов может быть представлена в виде произведения некоторого количества операторов. Рассмотрение радиотехнических систем с точки зрения теории цепей значительно упрощает задачу их исследования, поскольку огромное разнообразие конструктивных элементов, отличающихся своими характеристиками, принципом действия, конструктивным оформлением и т.д., заменялось сравнительно небольшим количеством идеальных элементов и их соединений, представляющих реальные элементы и связи. Любая электротехническая цепь может рассматривается как совокупность идеализированных двухполюсников, действие каждого из которых может быть описано линейным оператором, преобразующим входящий ток в выходящий - и тот и другой представляются в этом случае вектором, характеризующим максимальное (или действующее) значение силы тока и его фазу. Одна из наиболее распространенных электротехнических схем - это трансформатор, преобразователь тока и/или напряжения, "в простейшем случае состоящий из 2 обмоток, первичной и вторичной, снабженный, как правило, ферромагнитным сердечником. Прохождение переменного электрического тока в первичной обмотке трансформатора индуцирует ЭДС во вторичной обмотке".

Американский инженер сербского происхождения Никола Тесла (1856-1943) пытался использовать этот принцип для беспроводной передачи энергии. Для этого в цепь первичной обмотки трансформатора включался колебательный контур с искровым прерывателем. В 1897 г. в Нью-Йорке он получил патент на "Электрический преобразователь", известный также под названием "трансформатора Теслы" (см. рис. 17) [60].

Несколько сложнее обстоит дело с нелинейными элементами радиотехнических цепей (например, радиолампами). Но и они для токов и напряжений, соответствующих линейным участкам их вольт-амперных характеристик, могут быть рассчитаны с помощью традиционных электротехнических методов.

К началу 20-х гг. телеграфия без проводов из полулюбительского изобретательства, где преобладали интуиция и искусство, превратилась в инженерную дисциплину, покоящуюся на твердом фундаменте технических расчетов и проектирования. Электрическая телеграфия "использует лишь слабые электрические токи и низкие напряжения по сравнению с сильноточной электротехникой. Тем не менее законы распространения электрического тока остаются в обеих этих областях одни и те же" [61]. В дополнение к этому разрабатываются новые методы и теории, например теория электрических цепей. "Доминирующая до конца XIX столетия сильноточная электротехника (машиностроительный период развития электротехники) была в основном ориентирована на практический опыт и поэтому не могла решающим образом помочь развитию теории электрических цепей. [...] Впервые в начале нашего столетия быстро развивающаяся слаботочная электротехника (телефонии и беспроволочной телеграфии) дала решающий импульс становлению самостоятельной теории электрических цепей и стала в этом виде исходным пунктом для многочисленных математических подходов" [62].

В радиотехнических системах постепенно выделились качественно иные, нежели в электротехнике, конструктивные блоки-подсистемы: колебательные и связанные контуры, фильтрующие цепи, усилители низкой, промежуточной и высокой частоты, модуляторы, детекторы, мультивибраторы, генераторы, ограничители, линии задержки и т.п. Эти конструктивные блоки, однако, могут иметь различную физическую основу, не обязательно сводимую к электротехническим элементам. Вокруг каждого такого блока группируются особые теоретические знания. Другими словами эти блоки сами представляют собой различные частные теоретические схемы, являющиеся, в свою очередь, обобщением конструктивных схем конкретных радиотехнических устройств, Например, главное свойство дроссельных фильтров (низких частот) и фильтров верхних частот - "явно выраженное предпочтение или подавление определенных диапазонов частот. Именно поэтому их называют "сепараторами" или "фильтрами". Вагнер выделил четыре основных типа фильтров: низких частот, высоких частот, полосовой фильтр и полосовой заграждающий фильтр. Кэмпбелл независимо от Вагнера пришел к аналогичным результатам, но опубликовал их лишь в 1922 г. Частотные характеристики этих цепей, состоящих из катушек индуктивности и конденсаторов (реактивных четырехполюсников) могут быть рассчитаны с помощью теории Вагнера. Возникший при этом "анализ электрических цепей" был настолько успешным, что стал применяться для расчета акустических и других механических колебательных систем. В то время как техника связи еще несколько десятилетий прежде должна была заимствовать аналогии из других научно-технических дисциплин, теперь ее теоретический аппарат настолько расширился, что она смогла возвратить полученное с процентами" [63]. Все эти блоки радиотехнических систем могут быть исследованы едиными методами в специально развитой для этого теории четырехполюсников. Монолитную или твердотельную схему, изготовленную как единый блок с помощью планарной технологии, можно теоретически представить как электронную схему, состоящую из резисторов, конденсаторов и т.п. Например, четырехполюсную интегральную схему можно представить в виде линии передачи с дискретными или распределенными элементами, т.е. состоящей из двухполюсников (см. рис. 18) [64]. Эта модель представляет собой схематическое "описание в форме соответствующей схемы замещения".

На рис. 18 а представлена дискретная схема замещения "сначала для длины р" (см. рис. 18 в). "В данном случае индуктивность и омические потери цепи электрического тока высокой частоты учитываются с помощью введения элементов L и R и за счет непроводимости диода в одном направлении, для рассматриваемой полосы высоких частот через последовательное включение зависимой от напряжения емкости перехода C(U) и электронной проводимости G. Периодическая нелинейная линия передачи (NLTL) в целом [см. рис. 18 в] представляется с помощью цепочки нескольких таких схем замещения, которые также обозначают ячейки", что на рис. 18 в показано пунктиром. "При пренебрежении сопротивлением элементов циклическое повторение подобных ячеек (с чередованием последовательного и параллельного включения ветвей) приводит к схеме замещения в форме многозвенной LC-цепи с характеристикой фильтра низких частот. Для вывода волнового уравнения примененной здесь модели примем теперь, что при распространении волн по нелинейной линии передачи длина любых появляющихся в ней волн является достаточно большой по сравнению с длиной периода р" (рис. 18 в). Тогда схема замещения с распределенными элементами на рис. 18 б "будет полезной для описания нелинейного распространения волн по всей нелинейной линии передачи. На этой схеме замещения описывается с помощью индуктивности, последовательно включенного резистора, а также зависимой от напряжения емкости перехода и электронная проводимость проводника через соответствующие проводящие пластины" [65].

Теоретическое исследование схем с включенными в них реактивными элементами (сопротивлениями, конденсаторами, катушками индуктивности, трансформаторами) позволяет устанавливать соотношения между силой тока и напряжением в какой-либо электрической цепи в соответствии с правилами, сформулированными Кирхгофом и Гельмгольцем. Распространение этих правил на случай переменного тока сделало "принципиально возможными расчеты электрических цепей, содержащих не только [омические] сопротивления, но и конденсаторы (емкости) и катушки индуктивности (индуктивности)" [66]. Последние зачастую стали называть соответственно емкостными и индуктивными сопротивлениями. Любой проводник (например, кусок медной проволоки) может быть представлен на эквивалентной схеме для цепи постоянного тока омическим сопротивлением. Для цепи переменного тока низкой частоты должно быть добавлено индуктивное сопротивление, для переменного тока высокой частоты - еще и емкостное сопротивление. В русском языке термин "сопротивление" (или эквивалентное сопротивление) означает в первую очередь идеализированный элемент (абстрактный объект технической теории - физическую величину) идеализированной электрической цепи (поточной схемы) в отличие от "сопротивления" как конструктивного элемента (радиодетали) реальной электрической цепи (структурной, или конструктивной схемы), называемого "резистором" (от англ. "resistor"). Таким образом одна и та же реальная электрическая цепь, состоящая из резисторов, конденсаторов и катушек индуктивности, соединенных между собой проволочными проводами, может быть представлена для разных режимов функционирования этой электрической цепи различными эквивалентными схемами: для постоянного тока достаточно представить ее в виде (поточной) эквивалентной схемы - схемы замещения, состоящей только из омических сопротивлений. Для переменного тока низкой частоты к ним добавляются индуктивные сопротивления, а на высокой частоте следует учитывать и емкостное сопротивление данной цепи.

На примере последовательного соединения омического сопротивления, индуктивности и емкости видно, каким образом могут строиться эквивалентные схемы пассивного двухполюсника (последовательного колебательного контура, изображенного в виде двухполюсника), где индуктивность заменяется индуктивным сопротивлением, а емкость - емкостным сопротивлением (см. рис. 19) [67].

Для проведения расчетов с использованием законов Ома и Кирхгофа эквивалентная схема должна быть сведена к еще более простой эквивалентной (функциональной, или математической) схеме, т.е. определенным образом идеализированной электрической цепи - схеме замещения более высокого уровня абстракции [68]. Первые экспериментальные и теоретические результаты были получены Омом еще в 1824 г. Всего три года спустя позже он издал книгу под названием "Математически обработанные гальванические цепи", которая содержит все существенные законы электрических цепей. Однако он интересовался в первую очередь открытием физических закономерностей, а поэтому не использовал свои достижения для расчета больших электрических цепей. Гораздо больший вклад в становление теории расчета электрических цепей внес Кирхгоф. Он сформулировал в своей первой работе 1845 г. названные его именем законы в несколько более общей форме, чем у Ома. Собственно, рож дение теории электрических цепей следует, однако, отнести к 1847 г., когда Кирхгоф опубликовал свою работу под названием "О решении уравнений, с помощью которых проводится исследование линейного распределения гальванических токов". В этой работе впервые дается методика анализа электрических цепей с применением теории графов. В работах «О сохранении силы» (1847) и «О некоторых законах распределения электрических токов в телесных проводниках с применением для опытов с животным электричеством» (1853) Гельмгольц заложил основы динамической теории электрических цепей и «теории двухполюсников». Окончательную форму теория приобрела благодаря Флемингу и Штейнмецу, перенесшим на «линейные RLC-цепи с синусоидальным возбуждением» методы, развитые для линейных электрических цепей, состоящих из омических сопротивлений [69].

Любой реактивный двухполюсник можно представить в виде омического сопротивления, индуктивности и емкости, а можно - в виде комплексного сопротивления (Z). Активный двухполюсник может быть заменен эквивалентной ЭДС с внутренним сопротивлением z. Выделяя в электрической цепи замкнутые контуры и производя соответствующие замены активных и реактивных двухполюсников, можно получить систему линейных уравнений для всех токов и напряжений в сети (см. рис. 20) [70]. Число независимых контуров определяется соотношением n - р - q + 1, где р - число ветвей в графе, представляющем сеть, q - число его узлов. В каждом контуре вводятся свои токи. Первое правило Кирхгофа требует равенства нулю суммы всех токов в каждом узле графа, второе - равенство нулю суммарного падения напряжения в каждом контуре.

Например, схема, представленная на рис. 21 я, может быть сведена к графу, имеющему 3 узла (q = 3) и 5 ветвей (п = 5) (рис. 21 б) [71].

"Каждому физическому процессу будет точно соответствовать определенная математическая операция. Электрическая цепь, состоящая из омических сопротивлений имеет при данных ЭДС лишь одну единственную схему распределения напряжений или токов, т.е. ее линейные уравнения имеют единственное решение. Такая однозначность выводится уже из законов Кирхгофа, которые в свое время быстро приобрели права гражданства.

Однако всё, о чем говорилось выше, позволяет лишь анализировать схемы. Техническая же теория только тогда может считаться построенной, если в ней становится возможным также синтез схем - создание нового технического устройства на основе имеющихся конструктивных элементов. Очень важно теоретически рассчитать основные параметры нового технического устройства и проимитировать его функционирование. Именно таким образом Кэмпбелл, работавший тогда в белловских телефонных лабораториях, и Вагнер, сотрудник германского почтамта, смогли создать первый эскиз теории синтеза LC-фильтров, в общих чертах завершенной несколько позже Форестом и Дарлингтоном в США [72].

Радиотехническая система может быть представлена в виде цепочки блоков, каждый из которых преобразует один из параметров электромагнитных колебаний. К таким блокам относятся: генератор (преобразует какой-либо вид энергии в электромагнитные колебания), модулятор (позволяет изменять соответствующую характеристику электромагнитного колебания по определенному закону, скажем, амплитуду, частоту или фазу), фильтр (отфильтровывающий помехи), усилитель (устройство, увеличивающее колебания только по амплитуде, их фазовые и частотные соотношения должны передаваться без изменений) и т.д. В теории четырехполюсников разрабатывается специальный математический аппарат, основанный на матричном исчислении, доказываются специальные теоремы, анализируются различные типы четырехполюсников, даются их обобщенные уравнения и параметры. Теория четырехполюсников дает возможность осуществлять анализ и синтез различных многокаскадных радиотехнических устройств на теоретическом уровне и транслировать на уровень инженерной деятельности важнейшие результаты.

Таким образом в теоретической радиотехнике динамическая физическая картина электромагнитных взаимодействий (колебаний, волн, полей) совмещается со структурным изображением радиотехнических систем, в которых эти естественные (в данном случае физические, точнее электродинамические) процессы протекают и искусственно поддерживаются. Именно их органическое сочетание и образует обобщенную теоретическую схему технической науки.

На первых этапах своего развития радиотехника отличалась скорее описательными, чем расчетными методами исследования. Однако о появлении технической науки можно говорить в полной мере лишь тогда, когда в ней построена математизированная техническая теория. В ней должны быть выработаны процедуры перехода от структурных теоретических схем к "процессуальным" и функциональным схемам и обратно (другими словами процедуры анализа и синтеза). Только после того, как в технической науке заданы процедуры теоретического синтеза технических систем, которые позволяют распространить полученные теоретические результаты на целый класс гипотетических технических систем (с возможностью выработки на их основе практических методических рекомендаций для еще неосуществленной инженерной деятельности), построенная в этой технической науке обобщенная теоретическая схема может рассматриваться как универсальная относительно данного класса технических систем. Другими словами, именно тогда она получает статус "универсальной" Теоретической схемы определенной научно-технической дисциплины (точнее/ "семейства" такого рода дисциплин) и соответствующего им вида инженерйой деятельности.

С 1895 по 1905 гг. беспроводная телеграфия развивалась преимущественно эмпирически. Ф. Браун - сторонник развития университетской технической науки - пытался открыть в Страсбургском университете технический факультет. Он считал, что с открытием технического факультета в рамках университета и с помощью нескольких успешно работающих вне его электротехнических предприятий можно развить экспериментальную и педагогическую практику как новую техническую науку, которую еще предстоит создать, с ясно определенными целями и содержанием обучения. Он ориентировался не на теорию, а на необходимость технических применений и разработал программу модернизации физики как технической физики. К сожалению, этому проекту не было суждено осуществиться. Техническая физика вела в университетах лишь своего рода теневое существование, хотя большинство физиков и работало в области техники [73]. Эти идеи, однако, оказали влияние не только в Германии, но и в России. Ближайшие сотрудники Брауна из России Л.И. Мандельштам и Н.Д. Папалекси стали развивать радиотехнику в России в духе идей Ф. Брауна.

Леонид Исаакович Мандельштам (1897-1944) учился на физико-математическом факультете Новороссийского университета в России, но из-за участия в студенческих волнениях вынужден был продолжить свое образование в Страсбурге, которое закончил в 1902 г. Мандельштам в 1902 г. защитил у Брауна кандидатскую диссертацию, а в зимнем семестре 1906/07 гг. получил докторскую степень. Он изучал колебания в электрическом контуре и открыл принципы слабых взаимодействий, которые до сегодняшнего дня являются весьма важными для радиотехники. Мандельштам в течение 10 лет был ассистентом Брауна. Он также работал "несколько недель на почте и в лаборатории фирмы "Сименс", чтобы изучить технику связи и телеграфии", а в 1911 г. получил постоянное место преподавателя прикладной физики. Позже ему было присвоено звание профессора.

Николай Дмитриевич Папалекси (1880-1947) "происходил из богатой семьи российского помещика в Крыму, так что у него не было необходимости работать в Страсбурге, чтобы обеспечить себе пропитание". Он защитил кандидатскую диссертацию в 1904 г., а докторскую - в 1911 г. Затем он работал приват-доцентом у Брауна. В начале Первой мировой войны Мандельштам и Папалекси как российские граждане были вынуждены покинуть Германию [74] и возвратиться в Россию. С 1923 г. они работали вместе в научном отделе Центральной радиолаборатории Электротехнического треста заводов слабого тока в Ленинграде. Мандельштам с 1924 г. стал заведовать кафедрой теоретической физики в Московском университете. Папалекси оставался сначала в Ленинграде, работая профессором в Политехническом университете, а с 1934 г. перешел на работу в Физический институт (и, кроме того, в Электротехнический институт) Академии наук СССР. В 1937 г. Мандельштам также перешел на работу в Физический институт, где проводил исследования в области оптики, радиофизики, радиотехники и теоретической физики (часто совместно с Папалекси). Мандельштам и Папалекси были избраны действительными членами Академии наук [75].

Теоретические исследования в радиотехнике исходили первоначально из экспериментальных работ Герца и все время опережали практику. Теоретическая систематизация появляющихся новых результатов становится безотлагательно необходимой тогда, когда возникает потребность обучения нового поколения инженеров. "Частичные проблемы, которые были решены к концу первых десятилетий развития техники телефонной связи и техники высоких частот, как кажется на первый взгляд, были внутренне мало взаимосвязаны. В 1910 г. Франц Брейсиг поэтому поставил перед собой задачу попытаться эти многочисленные вопросы рассмотреть на единой базе уравнений Максвелла. Он начал свою книгу "Теоретическая телеграфия" с общих основ теоретической электротехники, вывел из них следствия для проблем телефонии и телеграфии и в конце задал перспективу теоретической радиотехники. Книга Брейсига ясно показывает, что проводная телефония и телеграфия, так же как и молодая радиотехника, выдвинули многочисленные технические вопросы, но они разрушили математически обоснованные решения, взорвали рамки физических представлений. Он впервые указал на расширение телеграфии (как синонима "слаботочной техники", т.е. техники связи) в техническую науку" [76].

В предвоенные годы в России происходит довольно быстрое распространение радиотехнических знаний. В 1907 г. в Санкт-Петербурге начали выходить "Научные основы беспроволочной телеграфии" ученика Попова А.А. Петровского. Во втором издании 1913 г. Петровский приводит уже точные математические представления также и для решения инженерных задач. Он пишет, что "радиотелеграфия превратилась в новую научную дисциплину, которая занимается приложением электричества и магнетизма к практике" [77].

Уроки истории

В 1902-1903 гг. Петровский продолжил читать спецкурс "Телеграфирование без проводов", начатый до этого Поповым в Санкт-Петербургском политехническом институте. Еще один ученик Попова профессор И.Т. Фрейман создал и возглавил в 1917 г. кафедру радиотехники в этом институте. Несколько позже он издал первые учебники по радиотехнике - "Краткий очерк основ радиотехники" и "Общий курс радиотехники" (1 изд. - 1924 г., 2 изд. - 1928 г.). Посвященные радиотехнике периодические издания стали выходить в разных странах Старого и Нового света. В 1913 г. в США вышел в свет первый номер ежемесячного журнала "Труды Института радиоинженеров". В Германии в 1907 г. появился "Журнал слаботочной техники", в 1908 г. - "Ежегодник беспроволочной телеграфии и телефонии", а в 1911 г. - как последнее нововведение перед Первой мировой войной - "Телеграфная техника и техника связи". Заняла радиотехника подобающее место и в высших технических школах: в 1911 г. первая высшая техническая школа в Германии - Высшая техническая школа Дрездена - образовала самостоятельный Институт слаботочной техники. Другие высшие технические школы последовали этому примеру. Подводя итог можно констатировать, что к 1914 г. закончился период становления техники связи как технической науки.

* * *

Вышеописанная история теоретической радиотехники представляет собой образцовый пример (исторический идеальный тип) того способа формирования технической теории, когда исходным пунктом, с одной стороны, развития новой техники и отрасли промышленности, а с другой - технической теории и научно-технической дисциплины, является взаимодействие теории и эксперимента в физике.

Список литературы

1 Христианович С.А. Механика сплошной среды. М: Наука, 1981. С. 302-303.

2 См.: Семенов А. Забытый пророк // История электросвязи. Виртуальный компьютерный музей (www.computer-museum.ru/connect/heaviside.htm).

3 Цит. по: oliver-heaviside.search.ipupdater.com.

4 Симоненко О. Д. Электротехническая наука в первой половине XX века. М.: Наука. 1988. С 125.

5 Mathis, W. Theorie nichtlinearer Netzwerke. Berlin; Heidelberg: Springer, 1987. S. 26.

6 Артоболевский И. И., Боголюбов А. Н. Леонид Владимирович Ассур. 1878-1920. М.: Наука, 1971. С. 130.

7 Там же. С. 65.

8 В своем анализе технической теории мы опираемся на результаты содержательного методологического анализа естественно-научной теории, полученные в ряде основополагающих работ В. С. Степиным (см., например: Степин В. С. Теоретическое знание. Структура, историческая эволюция. М.: Прогресс-Традиция, 2000). Мы рассматриваем радиотехнику как особую научно-техническую дисциплину.

9 Hertz, H. (Uber die elektrodynamischen Wellen im Luftraume und deren Reflexion // Annalen der Physik und Chemie. Neue Folge. Bd. XXXIV. N 8. Fig. 1-4.

10 Gerhard-Mulhaupt, R. Die experimentelle Bestatigung der Maxwellschen Theorie durch Hertz in den Jahren 1886 bis 1889 // Heinrich Hertz: Festschrift anlasslich die Erforschung der elektromagnetischen Wellen vor 100 Jahre. Berlin: Heinrich-Hertz-Institut, 1988. S. 44, 46.

11 Mandelstam, L. N., Papalexi, L. Ferdinand Braun zum Gedachtnis // Die Naturwissenschaften.1928. Heft 32 (цит. по: www.oneillselectronicmuseum.com/germanfiles/page8b.htm).

12 Friedburg, H. Funkenspriinge. Die Entdeckung der elektromagnetischen Wellen // Baden-Wurttemberg Themenheft "Funkenspriinge. 100 Jahre Radiowellen. Heinrich Hertz". 1988. Nr. 1. S. 9.

13 Все витки спирали Рисса располагались в одной плоскости. Для опытов брались две спирали, расположенные параллельно друг другу (рис. 5). См.: Опыты Г. Герца - основополагающая предпосылка к изобретению радиосвязи // Проект: От электрической искры до мировой компьютерной сети (radiomuseum.ur.ru/index4.html).

14 То есть определил по наличию и интенсивности искр положения пучностей и узлов генерируемых электромагнитных волн.

15 Hertz, H. Uber Strahlen elektrischer Kraft // Annalen der Physik und Chemie. Neue Folge. Bd. XXXVI. N 4. S. 2.

16 Brief HS 03154 (здесь и далее цит. по: Briefe von Heinrich Hertz. Archiv. Deutsches Museum, Munchen).

17 Kaiser, W. Die Entwicklung der Elektrotechnik in ihrer Wechselwirkung mit der Physik // Naturfassungen in Philosophie, Wissenschaft, Technik / Hrsg. von L. Schafer, E. Strocker. Bd. Ill; Aufklarung und spate Neuzeit. Freiburg; Munchen: Karl Alber, 1995. S. 97.

18 Hertz. Uber die elektrodynamischen Wellen... S. 145.

19 Brief HS 03122.

20 Kaiser. Die Entwicklung der Elektrotechnik... S. 97.

21 Foppl, A. Einfuhrung in die Maxwellsche Theorie der Elektrizitat. Leipzig: B. G. Teubner, 1904. S. VI.

22 Цит. по: 50 лет радио. Вып. 1: Из предыстории радио. Сборник оригинальных статей и материалов / Ред. С. М. Рытов. М.; Л.: Мысль, 1948. С. 398.

23 См.: Aitken, H. G. J. Syntony and spark - the origin of radio. N.Y.: John Willey & Sons, 1976. P. 185.

24 Ibid. P. 143. Рисунок воспроизводится по: Опыты Г. Герца - основополагающая предпосылка к изобретению радиосвязи // Проект: От электрической искры до мировой компьютерной сети (radiomuseum.ur.ru/index4.html).

25 См.: www.pit.physik.uni-tuebingen.de/braun.html.

26 См.: Hars, F. Ferdinand Braun (1850-1918). Ein wilhelminischer Physiker. Berlin; Diepholz Verlag fur Geschichte der Naturwissenschaft und Technik, 1999. S. 151.

27 Hertz, H. Untersuchungen iiber die Ausbreitung der elektrischen Kraft. Leipzig: Johann Ambrosius Barth, 1892. S. 3.

28 Nesper, E. Die ersten deutschen Versuche mit Funkentelegraphie 1897 // Jahrbuch der drahtlosen Telegraphie und Telephonic Zeitschrift fur Hochfrequenztechnik. 1922. Bd. 19. H. 2. S. 130.

29 Reich der Erfindungen / Hrsg. von H. Gamter. Reprint von 1901. Bindlach: Gondrom, 1998. S. 256-257.

30 Описание станции см. в: Климин А. И., Уралов В. А. Фердинанд Браун - лауреат Нобелевской премии в области физики // Электросвязь. 2000. № 8 (цит. по: www.computer-museum.ru/connect/histral3.htm).

31 Aitken. Syntony and spark... P. 195.

32 Kurz, P. Weltgeschichte des Erfmdungsschutzes. Koln; Berlin: Carl Heymanns. 2000. S. 445.

33 Aitken. Syntony and spark... P. 198-200.

34 Alexander Stepanowitsch Popow // de.wikipedia.org/wiki/Alexander_Stepanowitsch_Popow

35 Рисунок воспроизводится по: Морозов И. Д. Что изобрел Попов и на что получил патент Г. Маркони // www.lseptember.ru/ru/fiz/2002/20/no20_l.htm.

36 Mandelstam, Papalexi. Ferdinand Braun zum Gedachtnis...

37 Reich der Erfindungen... S. 257.

38 Рисунок воспроизводится по Funkentelegraphie... S. 130-131. кн.: Nesper. Die ersten deutschen Versuche mit...

39 См.: Кип, P. Weltgeschichte des Erfindungsschutzes. Koln; Berlin: Carl Heymanns, 2000. S. 446.

40 Frick, G. Ferdinand Braun (1850-1918). Nobelpreistrager der Physik (1909). StraBburg: GNT Verlag, 1997. S. 13-15,19,21.

41 Mandelstam, Papalexi. Ferdinand Braun zum Gedachtnis...

42 Рисунок воспроизводится по: Климин, Уралов. Фердинанд Браун - лауреат Нобелевской премии...

43 Mandelstam, Papalexi. Ferdinand Braun zum Gedachtnis...

44 "Одной из существенных частей приемника является, как известно, детектор, т.е. устройство, которое под влиянием пришедшей в приемник волны регистрирует появляющиеся токи высокой частоты. В качестве детектора в самом начале развития беспроволочной телеграфии использовался так называемый когерер. Он остается, несмотря на усилия целого ряда изобретателей, весьма неудобным и непостоянным устройством, совсем не подходящим для технических целей. Поэтому понятно, что многие исследователи стремились найти более подходящие детекторы" (Там же).

45 Там же.

46 Цит. по: www.pit.physik.uni-tuebingen.de/braun.html.

47 Mandelstam, Papalexi. Ferdinand Braun zum Gedachtnis...

48 Der Oszillograph - Prinzip // www.abe-si.de/ET/oszi.html.

49 Различные части этого рисунка воспроизведены по: Der Oszillograph - Prinzip...; Климин, Уралов. Фердинанд Браун - лауреат Нобелевской премии...; письма Генриха Герца швейцарскому физику Эмилю Саразину от 12 апреля 1891 года (HS 03141) и профессору Л. Ценлеру от 29 апреля 1893 года (HS 03169).

50 Ferdinand Braun (1850-1918) // www.pit.physik.uni-tuebingen.de/braun.html.

51 См.: Hats, F. Ferdinand Braun (1850-1918). Ein wilhelminischer Physiker. Berlin; Diepholz: Verlag fur Geschichte der Naturwissenschaft und Technik, 1999. S. 114-116.

52 Кип. Weltgeschichte des Erfindungsschutzes... S. 452.

53 Искровой беспроволочный телеграф как эпоха ранней радиосвязи // Проект: От электрической искры до мировой компьютерной сети (radiomuseum.ur.ru/index5.html).

54 Кип. Weltgeschichte des Erfindungsschutzes... S. 451.

55 Радиолампа. Основы радиовещания XX века // Проект: От электрической искры до мировой компьютерной сети (radiomuseum.ur.ru/index6.html).

56 Киn. Weltgeschichte des Erfindungsschutzes... S. 452.

57 Mandelstam, Papalexi. Ferdinand Braun zum Gedachtnis...

58 Mandelstam, Papalexi. Ferdinand Braun zum Gedachtnis...

59 Уже Браун "окончательно определил, что антенна не является пассивным конструктивным элементом" (см.: Hars. Ferdinand Braun... S. 138).

60 См.: Tesla-Transformator // de.wikipedia.org/wiki/Tesla-Transformator.

61 Herzog, J., Feldmann, С. Die Berechnung elektrischer Leitungsnetze in Theorie und Praxis. Berlin: Springer, 1921. S. 12.

62 Mathis. Theorie nichtlinearer Netzwerke... S. 26.

63 Geschichte der Technikwissenschaften / Hrsg. von G. Buchheim, R. Sonnemann. Basel; Boston; Berlin: Birkhauser, 1990. S. 393.

64 См.: Huelsewede, R. Erzeugung ultrakurzer elektrischer Impulse auf nichtlinearen Leitungsstrukturen. Dissertation (цит. по: www.ub.uni-duisburg.de/ETD-db/theses/available/duett-09172001-120734/unrestricted/inhalt.htm).

65 Huelsewede. Erzeugung ultrakurzer elektrischer Impulse...

66 Geschichte der Technikwissenschaften... S. 392-393.

69 См.: Mathis. Theorie michtlinearer Netzwerke... S. 25-26.

70 См., например: Теория сигналов и цепей (учебное пособие) // media.karelia.ru/~keip/circuit/theor.htm.

71 См.: Элементы электрических цепей // www.ups-info.ru/elementy_elektritcheskih_tsepey.html.

74 Ibid. S. 203,204, 211, 222.

75 См.: Горелик Г. Е. Леонид Мандельштам и его школа // Вестник российской академии наук. 2004. № 10. С. 932-940 (цит. по: ggorelik.narod.ru/ADS_Babochki/LIM_VRAN_).

76 Geschichte der Technikwissenschaften... S. 318.

77 Петровский А.А. Научные основания беспроволочной телеграфии. СПб., 1-е изд. 1907; 2-е изд., 1913. С. 1. После выпуска первых книг по теоретической радиотехники в России публикуется целая серия работ в этой области, среди которых назовем лишь самые первые: Фрейман Н. Г. Курс радиотехники. Л., 1924; Берг А. И. Общая теория радиотехники. Л., 1925.

 



2019-07-03 237 Обсуждений (0)
Построение технической теории - теоретической радиотехники 0.00 из 5.00 0 оценок









Обсуждение в статье: Построение технической теории - теоретической радиотехники

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (237)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)