Мегаобучалка Главная | О нас | Обратная связь


Распространение звуковых волн, фаза и противофаза



2020-02-04 555 Обсуждений (0)
Распространение звуковых волн, фаза и противофаза 0.00 из 5.00 0 оценок




Процесс распространения звуковых волн происходит во всех направлениях от источника. Простейший пример для понимания этого явления: камешек, брошенный в воду.

От места, куда упал камень, начинают расходиться волны по поверхности воды во всех направлениях. Однако, представим ситуацию с использованием динамика в неком объёме, допустим закрытом ящике, который подключён к усилителю и воспроизводит какой-то музыкальный сигнал. Несложно заметить (особенно при условии, если подать мощный НЧ сигнал, например бас-бочку), что динамик совершает стремительное движение "вперёд", а потом такое же стремительное движение "назад". Остаётся понять, что когда динамик совершает движение вперёд, он излучает звуковую волну, которую мы слышим впоследствии. А вот что происходит, когда динамик совершает движение назад? А происходит парадоксально тоже самое, динамик совершает тот же звук, только распространяется он в нашем примере всецело в пределах объёма ящика, не выходя за его пределы (ящик закрыт). В целом, на приведённом выше примере можно наблюдать достаточно много интересных физических явлений, наиболее значимым из которых является понятие фазы.

Звуковая волна, которую динамик, находясь в объёме, излучает в направлении слушателя - находится "в фазе". Обратная же волна, которая уходит в объём ящика, будет соответственно противофазной. Остаётся только понять, что подразумевают эти понятия? Фаза сигнала – это уровень звукового давления в текущий момент времени в какой-то точке пространства. Фазу проще всего понять на примере воспроизведения музыкального материала обычной напольной стерео-парой домашних акустических систем. Представим, что две такие напольные колонки установлены в неком помещении и играют. Обе акустические системы в этом случае воспроизводят синхронный сигнал переменного звукового давления, притом звуковое давление одной колонки складывается со звуковым давлением другой колонки. Происходит подобный эффект за счёт синхронности воспроизведения сигнала левой и правой АС соответственно, другими словами, пики и спады волн, излучаемых левыми и правыми динамиками совпадают.

А теперь представим, что давления звука по-прежнему меняются одинаковым образом (не претерпели изменений), но только теперь противоположно друг другу. Подобное может произойти, если подключить одну акустическую систему из двух в обратной полярности ("+" кабель от усилителя к "-" клемме акустической системе, и "-" кабель от усилителя к "+" клемме акустической системы). В этом случае противоположный по направлению сигнал вызовет разницу давлений, которую можно представить в виде чисел следующим образом: левая акустическая система будет создавать давление "1 Па", а правая акустическая система будет создавать давление "минус 1 Па". В результате, суммарная громкость звука в точке размещения слушателя будет равна нулю. Это явление называется противофазой. Если рассматривать пример более детально для понимания, то получается, что два динамика, играющие "в фазе" - создают одинаковые области уплотнения и разряжения воздуха, чем фактически помогают друг другу. В случае же с идеализированной противофазой, область уплотнения воздушного пространства, созданная одним динамиком, будет сопровождаться областью разряжения воздушного пространства, созданной вторым динамиком. Выглядит это примерно, как явление взаимного синхронного гашения волн. Правда, на практике падения громкости до нуля не происходит, и мы услышим сильно искажённый и ослабленный звук.

Самым доступным образом можно описать это явление так: два сигнала с одинаковыми колебаниями (частотой), но сдвинутые по времени. Ввиду этого, удобнее представить эти явления смещения на примере обычных круглых стрелочных часов. Представим, что на стене висит несколько одинаковых круглых часов. Когда секундные стрелки этих часов бегут синхронно, на одних часах 30 секунд и на других 30, то это пример сигнала, который находится в фазе. Если же секундные стрелки бегут со смещением, но скорость по-прежнему одинакова, например, на одних часах 30 секунд, а на других 24 секунды, то это и есть классический пример смещения (сдвига) по фазе. Таким же образом фаза измеряется в градусах, в пределах виртуальной окружности. В этом случае, при смещении сигналов относительно друг друга на 180 градусов (половина периода), и получается классическая противофаза. Нередко на практике возникают незначительные смещения по фазе, которые так же можно определить в градусах и успешно устранить.

Волны бывают плоские и сферические. Плоский волновой фронт распространяется только в одном направлении и редко встречается на практике. Сферический волновой фронт представляет собой волны простого типа, которые исходят из одной точки и распространяется во всех направлениях. Звуковые волны обладают свойством дифракции, т.е. способностью огибать препятствия и объекты. Степень огибания зависит от отношения длины звуковой волны к размерам препятствия или отверстия. Дифракция возникает и в случае, когда на пути звука оказывается какое-либо препятствие. В этом случае возможны два варианта развития событий: 1) Если размеры препятствия намного больше длины волны, то звук отражается или поглощается (в зависимости от степени поглощения материала, толщины препятствия и т.д.), а позади препятствия формируется зона "акустической тени". 2) Если же размеры препятствия сравнимы с длиной волны или даже меньше её, тогда звук дифрагирует в какой-то мере во всех направлениях. Если звуковая волна при движении в одной среде попадает на границу раздела с другой средой (например воздушная среда с твёрдой средой), то может возникнуть три варианта развития событий: 1) волна отразится от поверхности раздела 2) волна может пройти в другую среду без изменения направления 3) волна может пройти в другую среду с изменением направления на границе, это называется "преломление волны".

Отношением избыточного давления звуковой волны к колебательной объёмной скорости называется волновое сопротивление. Говоря простыми словами, волновым сопротивлением среды можно назвать способность поглощать звуковые волны или "сопротивляться" им. Коэффициенты отражения и прохождения напрямую зависят от соотношения волновых сопротивлений двух сред. Волновое сопротивление в газовой среде гораздо ниже, чем в воде или твёрдых телах. Поэтому если звуковая волна в воздухе падает на твердый объект или на поверхность глубокой воды, то звук либо отражается от поверхности, либо поглощается в значительной мере. Зависит это от толщины поверхности (воды или твёрдого тела), на которую падает искомая звуковая волна. При низкой толщине твёрдой или жидкой среды, звуковые волны практически полностью "проходят", и наоборот, при большой толщине среды волны чаще отражается. В случае отражения звуковых волн, происходит этот процесс по хорошо известному физическому закону: "Угол падения равен углу отражения". В этом случае, когда волна из среды с меньшей плотностью попадает на границу со средой большей плотности - происходит явление рефракции. Оно заключается в изгибе (преломлении) звуковой волны после "встречи" с препятствием, и обязательно сопровождается изменением скорости. Рефракция зависит также от температуры среды, в которой происходит отражение.

В процессе распространения звуковых волн в пространстве неизбежно происходит снижение их интенсивности, можно сказать затухание волн и ослабление звука. На практике столкнуться с подобным эффектом достаточно просто: например, если два человека встанут в поле на некотором близком расстоянии (метр и ближе) и начнут что-то говорить друг другу. Если впоследствии увеличивать расстояние между людьми (если они начнут отдаляться друг от друга), тот же самый уровень разговорной громкости будет становиться всё менее и менее слышимым. Подобный пример наглядно демонстрирует явление снижения интенсивности звуковых волн. Почему это происходит? Причиной тому различные процессы теплообмена, молекулярного взаимодействия и внутреннего трения звуковых волн. Наиболее часто на практике происходит превращение звуковой энергии в тепловую. Подобные процессы неизбежно возникают в любой из 3-ёх сред распространения звука и их можно охарактеризовать как поглощение звуковых волн.

Интенсивность и степень поглощения звуковых волн зависит от многих факторов, таких как: давление и температура среды. Также поглощение зависит от конкретной частоты звука. При распространении звуковой волны в жидкостях или газах возникает эффект трения между разными частицами, которое называется вязкостью. В результате этого трения на молекулярном уровне и происходит процесс превращения волны из звуковой в тепловую. Другими словами, чем выше теплопроводность среды, тем меньше степень поглощения волн. Поглощение звука в газовых средах зависит ещё и от давления (атмосферное давление меняется с повышением высоты относительно уровня моря). Что касательно зависимости степени поглощения от частоты звука, то принимая во внимание вышеназванные зависимости вязкости и теплопроводности, поглощение звука тем выше, чем выше его частота. Для примера, при нормальной температуре и давлении, в воздухе поглощение волны частотой 5000 Гц составляет 3 Дб/км, а поглощение волны частотой 50000 Гц составит уже 300 Дб/м.

В твёрдых средах сохраняются все вышеназванные зависимости (теплопроводность и вязкость), однако к этому добавляется ещё несколько условий. Они связаны с молекулярной структурой твёрдых материалов, которая может быть разной, со своими неоднородностями. В зависимости от этого внутреннего твёрдого молекулярного строения, поглощение звуковых волн в данном случае может быть различным, и зависит от типа конкретного материала. При прохождении звука через твёрдое тело, волна претерпевает ряд преобразований и искажений, что чаще всего приводит к рассеиванию и поглощению звуковой энергии. На молекулярном уровне может возникнуть эффект дислокаций, когда звуковая волна вызывает смещение атомных плоскостей, которые затем возвращаются в исходное положение. Либо же, движение дислокаций приводит к столкновению с перпендикулярными им дислокациями или дефектами кристаллического строения, что вызывает их торможение и как следствие некоторое поглощение звуковой волны. Однако, звуковая волна может и резонировать с данными дефектами, что приведет к искажению исходной волны. Энергия звуковой волны в момент взаимодействия с элементами молекулярной структуры материала рассеивается в результате процессов внутреннего трения.

http://nopoint.ru/avtozvuk/



2020-02-04 555 Обсуждений (0)
Распространение звуковых волн, фаза и противофаза 0.00 из 5.00 0 оценок









Обсуждение в статье: Распространение звуковых волн, фаза и противофаза

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (555)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)