Мегаобучалка Главная | О нас | Обратная связь


Последовательное интегрирование



2020-03-19 311 Обсуждений (0)
Последовательное интегрирование 0.00 из 5.00 0 оценок




 

Снова рассмотрим интеграл по K-мерной области, разбитой сеткой на ячейки (рис. 2). Его можно вычислить последовательным интегрированием:

Каждый однократный интеграл легко вычисляется на данной сетке по квадратурным формулам типа:

Последовательное интегрирование по всем направлениям приводит к кубатурным формулам, которые являются прямым произведением одномерных квадратурных формул:

                                        (11)

Например, при K=2, если по каждому направлению выбрана обобщённая формула трапеций, а сетка рав­номерная, то веса кубатурной формулы равны  соответственно для внутренних, граничных и угловых узлов сетки. Легко показать, что для дважды непрерывно дифференцируемых функций эта формула имеет второй порядок точности, и к ней применим метод Рунге–Ромберга.

Вообще говоря, для разных направлений можно использовать квадратурные формулы разных порядков точности . Тогда главный член погрешности имеет вид:

 

 

Желательно для всех направлений использовать квадратурные формулы одинакового порядка точности.

Можно подобрать веса и положение линий сетки так, чтобы одномерная квадратурная формула была точна для многочлена максимальной степени, т.е. была бы формулой Гаусса, тогда, для случая K=2:

 

                (12)

 

где –нули многочленов Лежандра и соответствующие веса. Эти формулы рассчитаны на функции высокой гладкости и дают для них большую экономию в числе узлов по сравнению с более простыми формулами.


 

Произвольная область. Метод последовательного интегрирования можно применять к области про­извольной формы, например, с криволинейной границей. Рассмотрим этот случай при K=2. Для этого проведём через область хорды, па­раллельные оси , и на них введём узлы, расположенные на каждой хорде так, как нам требуется (рис. 4). Представим интеграл в виде:

Сначала вычислим интеграл по  вдоль каждой хорды по какой-нибудь одномерной квадратурной фор­муле, используя введённые узлы. Затем вычислим интеграл по ; здесь узлами будут служить проекции хорд на ось ординат.

При вычислении интеграла по  имеется одна тонкость. Если область ограничена гладкой кривой, то при  длина хорды стремится к нулю не линейно, а как ; значит, вблизи этой точки . То же будет при . Поэтому интегрировать непосредственно  по формулам высокого порядка точности бессмысленно. Целесообразно выделить из  основную осо­бенность в виде веса , которому соответствуют ортогональные многочлены Чебышева второго рода.

 Тогда второе интегрирование выполняется по формулам Гаусса–Кристоффеля:

                              (13)

где , а  и –нули и веса многочленов Чебышева второго рода.

Чтобы можно было применять эту формулу, надо ординаты хорд на рис. 4 заранее выбрать в соответствии с узлами (13). Если это не было сделано, то придётся ограничиться интегрированием  по обобщённой формуле трапеций, причём её эффективный порядок точности в этом случае будет ниже второго.

 



2020-03-19 311 Обсуждений (0)
Последовательное интегрирование 0.00 из 5.00 0 оценок









Обсуждение в статье: Последовательное интегрирование

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (311)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)