Мегаобучалка Главная | О нас | Обратная связь


Предетерминация цитоплазмы



2015-12-04 332 Обсуждений (0)
Предетерминация цитоплазмы 0.00 из 5.00 0 оценок




ЛЕКЦИЯ № 2

По медицинской биологии и генетике

 

Для студентов 1 курса лечебного факультета

 

Тема: «ХРОМОСОМНЫЙ И ГЕНОМНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ НАСЛЕДСТВЕННОГО МАТЕРИАЛА»

Время - 90 мин.

Учебные и воспитательные цели:

1. Разобрать роль хромосом в передаче наследственной информации на примере типов наследования пола.

2. Дать понятие о сцепленном наследовании его механизмах и закономерностях.

3. Назвать основные положения хромосомной теории наследственности.

4. Указать особенности генома про- и эукариот.

ЛИТЕРАТУРА:

1. Бекиш О.-Я. Л. Медицинская биология. Курс лекций для студентов мед. ВУЗов. - Витебск, 2000 с. 119-135.

2. Биология /Под ред.В.Н. Ярыгина/ 1-я книга - М.:Вш,1997. с. 139-145.

3. О.-Я. Л. Бекиш, Л.А. Храмцова. Практикум по мед.биологии. - Изд. «Белый Ветер», 2000 - с. 52-54.

4. Бочков И.П., Захаров А.Ф., Иванов В.И. «Медицинская генетика». - М.: Медицина, 1984. - с. 41-49.

5. Фогель Ф., Мотульски А. Генетика человека: в 3-х т., т. 1-й - М.: Мир, 1989. - с.191-230.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ

1. Мультимедийная презентация.


РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

№ п/п Содержание Расчет рабочего времени
1. Хромосомный уровень организации наследственного материала. Морфофункциональная характеристика хромосом.
2. Кариотип и идиограмма. Классификации хромосом человека.
3. Молекулярная организация хромосом эукариот.
4. Уровни упаковки генетического материала.
5. Геномный уровень организации наследственного материала.
6. Цитоплазматическая наследственность. Генетическая система клетки.
7. СРС.
Всего:

Вопрос 1.

Хромосомный уровень организации наследственного материала характеризуется особенностями морфологии и функций хромосом. Роль хромосом в передаче наследственной информации была доказана благодаря:

1) открытию хромосомного определения пола,

2) установлению групп сцепления генов, соответствующих числу хромосом,

3) построению генетических и цитологических карт хромосом.

У ДНК-содержащих вирусов, бактерий, сине-зеленых водорослей, а также в самореплицирующихся органеллах клеток эукариот (пластиды, митохондрии, кинетопласты и др.) наследственный материал представлен единственной хромосомой, которая представляет собой голую двуспиральную молекулу ДНК. Молекула эта у некоторых форм линейна, но у большинства образует кольцо, которое обычно перекручено и имеет суперспирализованный вид. Длина молекул ДНК-содержащих вирусов, прокариот и клеточных органелл составляет: от 5 до 100 мк. У наиболее мелких вирусов - от 0,4 до 1 мк, а у бактерий - 1000-2000 мк.

У большинства РНК-содержащих вирусов хромосома представлена голой однонитевой молекулой РНК, например у ВИЧ. Однако известны вирусы, у которых хромосома образована двунитевой молекулой РНК. Размеры хромосом РНК-содержащих вирусов меньше, чем у ДНК-содержащих вирусов.

В ДНК вирусов закодирована информация обо всех его структурных белках. Многие вирусы содержат гены специфических ферментов, контролирующих репликацию фермента клетки-хозяина. Мелкие вирусы содержат только 3 гена, которые кодируют А-белок, репликазу, белок оболочки. Гены вирусов могут существовать в виде фрагментов ДНК, разделенных генетически инертными нуклеотидными последовательностями, которые в момент работы генов "вырезаются" и целостность генетической информации восстанавливается.

Транскрипция и репликация генетической информации осуществляется с участием ферментов клетки-хозяина.

Хромосомы прокариот представлены голой кольцевой молекулой ДНК. Прокариоты содержат только по одной хромосоме и являются гаплоидами. Молекулярная масса ДНК прокариот соответствует примерно 2000 структурных генов, длиной около 1 500 пар азотистых оснований. Гены располагаются линейно и несут информацию о структуре 3-х – 4,5 тысяч различных белков.

Хромосомы эукариот, в отличие от хромосом прокариот, построены из нуклеопротеида, главными компонентами которого являются ДНК и два типа белков - гистоновых (основных) и негистоновых (кислых) белков. Установлено, что в хромосомах эукариот (за исключением политенных хромосом) имеется лишь одна непрерывная нить ДНК, представляющая единую гигантскую двуспиральную молекулу, состоящую из сотен миллионов пар нуклеотидов. Длина ДНК в хромосоме может достигать нескольких сантиметров. Подтвердилось блестящее представление Н.К. Кольцова, который писал ещё в 30-х годах: «В основе каждой хромосомы лежит тончайшая нить, которая представляет собой спиральный ряд огромных органических молекул - генов. Возможно, что эта спираль является одной гигантской молекулой». Молекулярная организация хромосомы была рассмотрена нами ранее. В метафазе хромосомы, состоящие из двух сильно спирализованных хроматид, хорошо заметны, но гены в них остаются неактивными на протяжении всего митоза. После окончания митоза происходит деспирализация хромосом. В интерфазном ядре хромосома состоит из сильно растянутой хроматиды. Из-за небольшой толщины (25 мк) они не видны в оптический микроскоп, но хорошо видны в электронном микроскопе и не теряют своей индивидуальности на протяжении всего жизненного цикла клетки.

ДНК эукариот по структуре похожа на ДНК прокариот. Различия касаются:

· количества ДНК на геном;

· длины молекулы;

· порядка чередования нуклеотидных последовательностей;

· формы укладки ДНК. У прокариот – кольцевая форма молекулы ДНК, для эукариот - характерна линейная.

Особенностью ДНК эукариот является ее избыточность. У эукариот размер генов составляет около 1000 пар нуклеотидов. Генов у растений и животных много: у дрозофилы - 100 000, у млекопитающих и человека - 3-6 млн. нуклеотидных пар. А количество ДНК, участвующее в кодировании наследственной информации, необходимой для выполнения полной программы онтогенеза, - около 2% всей ДНК. Это является доказательством избыточности ДНК эукариот.

Часть избыточной ДНК представлена одинаковыми повтораминуклеотидов. Различают многократно и умеренно повторяющиеся последовательности нуклеотидов. Все они либо сконцентрированы в определенных местах генома и образуют структурный (конститутивный) хроматин, либо равномерно распределены вдоль генома. Структурный хроматин обычно встроен между уникальными последовательностями. Избыточная ДНК существует для управления генами, препятствует изменчивости.

Метафазная хромосома (спирализованный хроматин) состоит из двух хроматид. Форма определяется наличием первичной перетяжки - центромеры. Она разделяет хромосому на 2 плеча. Расположение центромеры определяет основные формы хромосом: метацентрические, субметацентрические, акроцентрические, телоцентрические.

Степень спирализации хромосом не одинакова. Участки хромосом со слабой спирализацией называют эухроматиновыми. Это зона высокой метаболической активности, где ДНК состоит из уникальных последовательностей. Зона с сильной спирализацией - гетерохроматиновыйучасток, способный к транскрипции. Различают конститутивныйгетерохроматин-генетический инертный, не содержит генов, не переходит в эухроматин, а так же факультативный,который может переходить в активный эухроматин. Концевые отделы дистальных участков хромосом называют теломеры.

Хромосомы обладают следующими свойствами (правила хромосом):

1. Индивидуальности - отличия негомологичных хромосом.

2. Парности.

3. Постоянством числа - характерным для каждого вида.

4. Непрерывности - способности к репродукции.

Вопрос 2

Хромосомы подразделяются на аутосомы (соматических клеток) и гетерохромосомы (половых клеток).

По предложению Левитского (1924) диплоидный набор соматических хромосом клетки был назван кариотипом. Он характеризуется числом, формой, размерами хромосом. Для описания хромосом кариотипа по предложению С.Г. Навашина их располагают в виде идиограммы - систематизированного кариотипа. В 1960 году была предложена Денверская международная классификация хромосом, где хромосомы классифицированы по величине и расположению центромеры. В кариотипе соматической клетки человека различают 22 пары аутосом и пару половых хромосом. Набор хромосом в соматических клетках называют диплоидным, а в половых клетках - гаплоидным(онравен половине набора аутосом). В идиограмме кариотипа человека хромосомы делят на 7 групп, в зависимости от их размеров и формы.

1 - 1-3 крупные метацентрические.

2 - 4-5 крупные субметацентрические.

3 - 6-12 и Х-хромосома средние метацентрические.

4 - 13-15 средние акроцентрические.

5 - 16-18 относительно малые мета-субметацентрические.

6 - 19-20 малые метацентрические.

7 - 21-22 и Y-хромосома наиболее малые акроцентрические.

Согласно Парижской классификации хромосомы разделены на группы по их размерам и форме, а также линейной дифференцировке.

Вопрос 3.

Хромосомы эукариот – это спирализованный хроматин – комплекс ДНК и белков, где 40% приходится на ДНК, 40% - на гистоновые (основные) белки и почти 20% - на негистоновые белки и немного РНК.

Гистоны -хромосомные белки с высоким содержанием аргинина и лизина. Гистоны стабилизируют структуру хромосомы и играют роль в регуляции активности генов.

Негистоновые (кислые) белки. В хромосомах их количество приблизительно вдвое меньше гистоновых. Существует более 100 видов негистоновых белков. Они разнообразны по молекулярному весу, структуре, видос-пецифичны. Эти белки могут быть ответственны за репликацию, репарацию, транскрипцию, возможно, играют роль и в активации генов. К ним относят актин, миозин, тубулин, ферменты синтеза РНК и ДНК - полимеразы и другие.

Из пяти классов гистонов, четыре (Н2А, Н2В, Н3, Н4) образуют своеобразные шаровидные тельца - нуклеосомы диаметром около 10 нм. В одну нуклеосому входит 8 молекул гистонов. Вокруг нуклеосомы уложен отрезок двуспиральной нити ДНК (около 140 нуклеотидных пар), который образует вокруг нее почти два оборота. Соседние нуклеосомы соединены друг с другом короткими отрезками ДНК (1-10 нм или 30-100 пар нуклеотидов). К каждому такому отрезку присоединены молекулы гистона Н1. На ген среднего размера приходится участок цепочки, приблизительно, из шести нуклеосом. Допускается, что вследствие взаимодействия Н1 с нуклеосомами происходит конденсация нуклеотидной структуры в особую хроматиновую нить (элементарную фибриллу, d=10 нм), которая закручивается в хроматиновую спираль (d= 25нм), или хроматиновый филамент. Хроматиновая спираль, возможно, идентична с хромонемой, которая во время деления скручивается в хроматиду.

Вопрос 4

Таким образом, уровни упаковки ДНК следующие:

1) Нуклеосомный (2,5 оборота двуспиральной ДНК вокруг восьми молекул гистоновых белков).

2) Супернуклеосомный - хроматиновая спираль (хромонема).

3) Хроматидный - спирализованная хромонема.

4) Хромосома - четвертая степень сперализации ДНК.

В интерфазном ядре хромосомы деконденсированы и представлены хроматином. Деспирализованный участок, содержащий гены, называется эухроматин (разрыхленный, волокнистый хроматин). Это необходимое условие для транскрипции. Во время покоя между делениями определенные участки хромосом и целые хромосомы остаются компактными.

Эти спирализованные, сильно окрашивающиеся участки, называются гетерохроматином. Они неактивны в отношении транскрипции. Различают факультативный и конститутивный гетерохроматин.

Факультативный гетерохроматин информативен, т.к. содержит гены и может переходить в эухроматин. Из двух гомологичных хромосом одна может гетерохроматической. Конститутивный гетерохроматин всегда гетерохроматичен, неиформативен (не содержит генов) и поэтому всегда неактивен в отношении транскрипции.

Хромосомная ДНК состоит из более 108 пар оснований, из которых образуется информативные блоки - гены, расположенные линейно. На их долю приходится до 25% ДНК. Ген - функциональная единица ДНК, содержащая информацию для синтеза полипептидов, или всех РНК. Между генами находятся спейсеры - неинформативные отрезки ДНК разной длины. Избыточные гены представлены большим числом - 104 идентичных копий. Примером являются гены для т-РНК, р-РНК, гистонов. В ДНК встречаются последовательности одних и тех же нуклеотидов. Они могут быть умеренно повторяющимися и высоко повторяющимися последовательностями. Умеренно повторяющиеся последовательности достигают 300 пар нуклеотидов с повторениями 102 - 104 и представляют чаще всего спейсеры, избыточные гены.

Высокоповторяющиеся последовательности (105 - 106) образуют конститутивный гетерохроматин. Около 75% всего хроматина не участвует в транскрипции, он приходится на высокоповторяющиеся последовательности и нетранскрибируемые спейсеры.

Вопрос 5

Геном - совокупность всех генов гаплоидного набора хромосом данного вида организма. Геномный уровень организации наследственного материала имеет особенности у прокариот и эукариот.

В геноме бактерий подавляющее большинство генов уникальны. Исключением являются гены, кодирующие р-РНК и т-РНК. Эти гены повторяются в геноме бактерий по несколько раз. Следует отметить определенное несоответствие между числом пар нуклеотидов в геноме бактерий и числом генов в них. Так, ДНК кишечной палочки содержит 3, 8 млрд. пар нуклеотидов. Структурных генов у них около 1000, на которые приходится 1-1, 5 млн. пар нуклеотидов. Остается предположить, что значительную часть в ДНК бактерий составляют участки, функции которых пока не ясны. Спирализация ДНК в «хромосоме» прокариот значительно меньше, чем у эукариот.

Геном эукариот:

· большое число генов,

· большее количество ДНК,

· в хромосомах имеется очень сложная система контроля активности генов во времени и пространстве, связанная с дифференциацией клеток и тканей в онтогенезе организма.

Количество ДНК в хромосомах велико и возрастает по мере усложнения организмов. Для эукариот также характерна избыточность генов. Так, у человека геном содержит число нуклеотидных пар, достаточное для образования более 2 млн. структурных генов, в то время как у человека имеется по данным 2000 года 31 тыс. всех генов.

Больше половины гаплоидного набора генома эукариотов составляют уникальные гены, представленные лишь по одному разу. У человека таких уникальных генов - 64%, у теленка - 55%, у дрозофилы - 70%.

Морган указал на стабильность структуры генома и постоянство расположения генов в хромосомах.

В 70-х годах у дрозофилы обнаружена группа генов, представленных многими кочующими генами, которые разбросаны по разным участкам хромосом. 30% генов кочуют по хромосомам, не имеют постоянной локализации. Мобильные гены составляют 5% всего генома.

Т.о. в течение последних 10 лет сформировалось представление, что в состав генома про- и эукариот входят гены:

1) имеющие либо стабильную, либо нестабильную локализацию;

2) уникальная последовательность нуклеотидов представлена в геноме единичными или малым числом копий: к ним относятся структурные и регуляторные гены; уникальные последовательности эукариот, в отличии от генов прокариот, имеют мозаичное строение;

3) многократно повторяющиеся последовательности нуклеотидов являются копиями (повторениями) уникальных последовательностей (у прокариот нет). Копии группируются по несколько десятков или сотен и образуют блоки, локализующиеся в определенном месте хромосомы. Повторы реплицируются, но, как правило, не транскрибируются. Они могут играть роль:

1) регуляторов генной активности;

2) защитного механизма от точковых мутаций;

3) хранение и передача наследственной информации;

4) механизм эволюции.

Вопрос 6

Хромосомная теория наследственности указывает на ведущую роль ядра в передаче наследственных признаков. По мере развития генетики накапливались данные о возможности прямого участия в явлениях наследственности - цитоплазмы. Такая форма наследственности определяется компонентами клетки, способными к самовоспроизведению, т.е. имеющими собственную ДНК.

Наследственность, при которой материальной основой наследования являются элементы цитоплазмы, называется цитоплазматической. Такая форма наследственности не подчиняется законам Менделя.

Цитоплазматическое наследование в отличие от хромосомного осуществляется по материнской линии, т.к. цитоплазмой богата яйцеклетка, а не сперматозоид.

Наследственные факторы цитоплазмы и органелл называются плазмотип или плазмон. Единица цитоплазматической наследственности - плазмоген. У прокариот носителями цитоплазматической наследственности является ДНК плазмид.

Плазмотип эукариот состоит из наследственного аппарата пластид, митохондрий, ДНК гиалоплазмы. Цитоплазматические наследственные структуры распределяются неравномерно в дочерние клетки, в отличии от ядерной.

Цитоплазматическая наследственность
I. Собственно цитоплазматическое наследование. II. Предетерминация цитоплазмы.
1. Пластидное III. Наследование через инфекции
2. Митохондриальное  
3. Цитоплазматическая мужская стерильность  

Пластидная ДНК. Наследование пестролистности у растений является примером такого типа наследования. Пестролистность у цветка ночной красавицы наблюдается только у женского растения. В процессе образования женских гамет при мейозе обнаруживается ДНК хлоропластов, в клетках пыльцы - она отсутствует. ДНК хлоропластов - кольцевая. Признак пестролистности связан с мутациями ДНК, что приводит к обесцвечиванию хлоропластов. Яйцеклетка, несущая гены пестролистности содержит в цитоплазме ДНК нормальных и обесцвеченных хлоропластов.

Митохондриальная наследственность. Митохондриальные гены кодируют 2 группы признаков, связанных:

1) с работой дыхательной системы;

2) с устойчивостью к антибиотикам.

В митохондриях дрожжевых клеток обнаружены гены дыхательных ферментов. Эти гены находятся в плазмидах. У бактерий выделяют 3 типа плазмид:

1) содержащие половой фактор F;

2) фактор R;

3) фактор col - колициногенный.

Бактерии с фактором F являются мужскими. При конъюгации фактор F переходит в женскую особь и она становится мужской.

Фактор R обеспечивает устойчивость к антибиотикам и также передается при конъюгации.

Фактор col содержит плазмиды, ДНК которых кодируют белки-колицины, убивающие бактерии, не содержащие таких плазмид.

Цитоплазматическая мужская стерильность (ЦМС) - разновидность внеядерной наследственности. Характеризуется присутствием в ДНК митохондрий и пластид цитоплазматического гена (плазмогена), угнетающего формирование хромосом при образовании пыльцы. В результате появляется нежизнеспособная (стерильная) пыльца, не образующая спермиев. ЦМС играет большую роль в селекции и семеноводстве для исключения самоопыления и последующего получения гетерозисных гибридов (кукуруза, лук, пшеница, свекла и др.)

Предетерминация цитоплазмы.

В цитоплазме яйцеклетки присутствует негенетические факторы (ферменты, белки-репрессоры), влияющие на экспрессию ядерных генов. Возникает "материнский эффект" - влияние генотипа матери на развитие потомства, передаваемым через цитоплазму яйцеклетки. Так наследуется направление закручивания спирали раковины прудовика, детерминируемое генотипом матери, а не зародыша.

SS, + Ss – правозакрученная раковина,

ss – левозакрученная.

Р♀ SS х ♂ss

F1 Ss – правозакрученная.

F2 вместо расщепления 3:1, все потомство имеет правозакрученную спираль, т.к. ss не выявляется.

Материальным субстратом цитоплазматической наследственности выступают гены ДНК, пластиды, митохондрии и какие-то пока не установленные факторы.



2015-12-04 332 Обсуждений (0)
Предетерминация цитоплазмы 0.00 из 5.00 0 оценок









Обсуждение в статье: Предетерминация цитоплазмы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (332)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)