Мегаобучалка Главная | О нас | Обратная связь  


Магнитное экранирование




Экранирование магнитных полей может быть осуществленно двумя методами:

Экранирование с помощью ферромагнитных материалов.

Экранирование с помощью вихревых токов.

Первый метод применяется обычно при экранировании постоянных МП и полей низкой частоты. Второй метод обеспечивает значительную эффективность при экранировании МП высокой частоты. Из-за поверхностного эффекта плотность вихревых токов и напряженность переменного магнитного поля по мере углубления в металл падает по экспоненциально­му закону:

Где

— показатель уменьшения поля и тока, который назы­вают эквивалентной глубиной проникновения.

Чем меньше глубина проникновения, тем больший ток течет в поверхностных слоях экрана, тем больше создаваемое им обратное МП, вытесняющее из пространства, занятое экраном, внешнее поле источника наводки. Если экран сделан из немагнитного материала, то экранирующий эффект будет зависеть только от удельной проводимости материала и частоты экранирующего поля. Если экран сделан из ферромагнитного материала, то при прочих равных условиях внешним полем в нем будет наводиться большая э. д. с. благодаря большей концентрации магнитных силовых линий. При одинаковой удельной проводимости материала увеличатся вихревые токи, что приведет к меньшей глубине проникновения и к лучшему экранирующему эффекту.



При выборе толщины и материала экрана следует исходить не из электрических свойств материала, а ру­ководствоваться соображениями механической прочно­сти, веса, жесткости, стойкости против коррозии, удобства стыковки отдельных деталей и осуществления меж­ду ними переходных контактов с малым сопротивлением, удобства пайки, сварки и прочим.

 

Характеристика Медь Латунь Аллю-миний Сталь Сталь Пер- маллой
Удельное сопротивление Ом (мм^2/м) 0.0175 0.06 0,03 0.1 0.1 0,65
Удельная проводимость См (см») 57*10^4 16.6*10^4 33*10^4 10*10^4 10*10^4 1,54* *10^4
Относительная магнитная проницаемость.
Эквивалентная глубина проник­новения 8. мм. при частоте, Гц: 10^2 10^3 10^4 10^5 10^6 10^7 10^8   6.7000 2.1000 0,6700 0.2100 0.0670 0.0210 0.0007     12.4000 3.9000 1.2400 0.3900 0.1240 0,0390 0.0124   8.8000 2,7509 0.Р800 0.2750 0,0880 0.0275 0.0088   - - - - 0,0230 0.0070 0.0023   1.640 0,490 0.164 0.049 - - -   0.380 0.120 0,038 0.012 - - -

Из данных таблицы видно, что для частот выше 10 МГц медная и тем более серебряная пленки толщиной около 0,1 мм дает значительный экранирующий эффект. Поэтому на частотах выше 10 МГц вполне допустимо применение экранов из фольгированого гетинакса или стеклотекстолита. На больших частотах сталь дает больший экранирующий эффект, чем немагнитные металлы. Однако стоит учитывать, что такие экраны могут вносить значительные потери в экранируемые цепи вследствие большого удельного сопротивления и явления гистерезиса. Поэтому такие экраны применимы только в тех случаях, когда с вносимыми потерями можно не считаться. Так же для большей эффективности экранирования экран должен обладать меньшим магнитным сопротивлением, чем воздух, тогда силовые линии магнитного поля стремятся пройти по стенкам экрана и в меньшем числе проникают в пространство вне экрана.Такой экран одинаково пригоден для защиты от воздействия магнитного поля и для защиты внешнего пространства от влияния магнитного поля созданного источником внутри экрана.

Существует много марок стали и пермаллоя с различными величинами магнитной проницаемости, поэтому для каждого материала нужно расчитывать величину глубины проникновения. Расчет производится по приближенному уравнению:

 


1) Защита от внешнего магнитного поля

Магнитные силовые линии внешнего магнитного поля (линии индукции магнитного поля помех) будут проходить в основном по толще стенок экрана, обладающего малым магнитным сопротивлением по сравнению с сопротивлением пространства внутри экрана. В результате внешнее магнитное поле помех не будет влиять на режим работы электрической цепи.

2) Экранирование собственного магнитного поля

Такое кранирование используется, если ставится задача предохранения внешних электрических цепей от воздействия магнитного поля, создаваемого током катушки. Индуктивности L, т. е. когда требуется практически локализовать помехи, создаваемые индуктивностью L, то такая задача решается при помощи магнитного экрана, как это схематически показано на рисунке. Здесь почти все силовые линии поля катушки индуктивности будут замыкаться через толщу стенок экрана, не выходя за их пределы вследствие того, что магнитное сопротивление экрана намного меньше сопротивления окружающего пространства.


3) Двойной экран

В двойном магнитном экране можно представить себе, что часть магнитных силовых линий, которые выйдут за толщу стенок одного экрана, замкнутся через толщу стенок второго экрана. Точно также можно представить себе действие двойного магнитного экрана при локализации магнитных помех, создаваемых элементом электрической цепи, находящимся внутри первого (внутреннего) экрана: основная масса магнитных силовых линий (линии магнитного рассеяния) замкнется через стенки наружного экрана. Разумеется, что в двойных экранах должны быть рационально выбраны толщины стенок и расстояние между ними.

Общий коэффициент экранирования достигает наибольшей величииы в тех случаях, когда толщина стенок и промежуток между экранами увеличивается пропорционально расстоянию от центра экрана, причем величина промежутка является средней геометрической величиной толщин стенок примыкающих к нему экранов. При этом коэффициент экранирования:

L = 20lg (H/Нэ)

Изготовление двойных экранов в соответствии с указанной рекомендацией практически затруднено из технологических соображений. Значительно целесообразнее выбрать расстояние между оболочками, прилегающими к воздушному промежутку экранов, большим, чем толщина первого экрана, приблизительно равным расстоянию между стеикой первого экрана и краем экранируемого элемента цепи (например, катушки иидуктивности). Выбор той или иной толщины стенок магнитного экрана нельзя сделать однозначным. Рациональная толщина стенок определяется. материалом экрана, частотой помехи и заданным коэффициентом экранирования. При этом полезно учитывать следующее.

1. При повышении частоты помех (частоты переменного магнитного поля помех) магнитная проницаемость материалов падает и вызывает снижение экранирующих свойств этих материалов, так как по мере снижения магнитной проницаемости возрастает сопротивление магнитному потоку, оказываемое экраном. Как правило, уменьшение магнитной проницаемости с повышением частоты идет наиболее интенсивно у тех магнитных материалов, у которых имеется наибольшая начальная магнитная проницаемость. Например, листовая электротехническая сталь с малой начальной магнитной проницаемостью мало изменяет величину jx с повышением частоты, а пермаллой, имеющий большие начальные значения магнитной проницаемости, весьма чувствителен к повышению частоты магнитного поля; магнитная проницаемость у него резко падает с частотой.

2. В магнитных материалах, подверженных действию высокочастотного магнитного поля помех, заметно проявляется поверхностный эффект, т. е. вытеснение магнитного потока к поверхности стенок экрана, вызывая увеличение магнитного сопротивления экрана. При таких условиях кажется, что почти бесполезно увеличивать толщину стенок экрана за пределы тех величин, которые заняты магнитным потоком при данной частоте. Такой вывод неправилен, ибо увеличение толщины стенок приводит к снижению магнитного сопротивления экрана даже при наличии поверхностного эффекта. При этом одновременно следует учитывать и изменение магнитной проницаемости. Так как явление поверхностного эффекта в магнитных материалах обычно начинает сказываться заметнее, чем снижение магнитной проницаемости в области низких частот, то влияние обоих факторов на выбор толщины стенок экрана будет различным на разных диапазонах частот магнитных помех. Как правило, снижение экранирующих свойств с повышением частоты помехи сильнее проявляется в экранах из материалов с высокой начальной магнитной проницаемостью. Указанные выше особенности магнитных материалов дают основание для рекомендаций по выбору материалов и толщины стенок магнитных экранов. Эти рекомендации могут быть сведены к следующим:

А) экраны из обычной электротехнической (трансформаторной) стали, обладающие малой начальной магнитной проницаемостью, можно применять при необходимости обеспечить малые коэффициенты экранирования (Кэ 10); такие экраны обеспечивают почти неизменный коэффициент экранирования в достаточно широкой полосе частот, вплоть до нескольких десятков килогерц; толщина таких экранов зависит от частоты помехи, причем чем ниже частота, тем большая толщина экрана требуется; например, при частоте магнитного поля помех 50—100 гц толщина стенок экрана должна быть приблизительно равна 2 мм; если требуется увеличение коэффициента экранирования или большая толщина экрана, то целесообразно применять несколько экранирующих слоев (двойных или тройных экранов) меньшей толщины;

Б) экраны из магнитных материалов с высокой начальной проницаемостью (например пермаллой) целесообразно применять при необходимости обеспечения большого коэффициента экранирования (Кэ > Ю) в сравнительно узкой полосе частот, причем толщину каждой оболочки магнитного экрана нецелесообразно выбирать больше 0,3—0,4 мм; экранирующее действие таких экранов начинает заметно падать на частотах, выше нескольких сот или тысяч герц, в зависимости от начальной проницаемости этих материалов.

Все сказанное выше о магнитных экранах справедливо в отношении слабых магнитных полей помех. Если же экран находится вблизи от мощных источников помех и в нем возникают магнитные потоки с большой магнитной индукцией, то, как известно, приходится учитывать изменение магнитной динамической проницаемости в зависимости от индукции; необходимо также учитывать при этом потери в толще экрана. Практически же с такими сильными источниками магнитных полей помех, при которых надо было бы считаться с их действием на экраны, не встречаются, за исключением некоторых специальных случаев, не предусматривающих радиолюбительскую практику и нормальные условия работы радиотехнических устройств широкого применения.

 

 


Тест

 

1. При магнитном экранировании экран должен:
1) Обладать меньшим магнитным сопротивлением, чем воздух
2) обладать равным воздуху магнитным сопротивлением
3) обладать большим магнитным сопротивлением, чем воздух

 

2. При экранировании магнитного поля Заземление экрана:
1) Не влияет на эффективность экранирования
2) Увеличивает эффективность магнитного экранирования
3) Уменьшает эффективность магнитног экранирования

 

3. На низких частотах (<100кГц) эффективность магнитного экранирования зависит от:
а) Толщины экрана, б) Магнитной проницаемости материала, в) Расстояния между экраном и другими магнитопроводами.
1) Верно только а и б
2) Верно только б и в
3) Верно только а и в
4) Все варианты верны

 

4. В магнитном экранировании при низких частотах используется:
1) Медь
2) Аллюминий
3) Пермаллой.

 

5. В магнитном экранировании при высоких частотах используется:
1) Железо
2) Пермаллой
3) Медь

6. На высоких частотах (>100кГц) эффективность магнитного экранирования не зависит от:
1) Толщины экрана

2) Магнитной проницаемости материала
3) Расстояния между экраном и другими магнитопроводами.

 


Использованая литература:

 

1. Волин, М. Л. Паразитные процессы в радиоэлектронной аппаратуре / М. Л. Волин – Москва, «Радио и связь», 1981г.

2. Семененко, В. А. Информационная безопасность / В. А. Семененко - Москва, 2008г.

3. Ярочкин, В. И. Информационая безопасность / В. И. Ярочкин – Москва, 2000г.

4. Демирчан, К. С. Теоретические основы электротехники III том / К. С. Демирчан С.-П, 2003г.

 

Поможем в ✍️ написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой



Читайте также:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (6692)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7