Мегаобучалка Главная | О нас | Обратная связь


История протонного магнитного резонанса



2015-11-07 1560 Обсуждений (0)
История протонного магнитного резонанса 0.00 из 5.00 0 оценок




Существование ядерных моментов впервые было обнаружено при изучении сверхтонкой структуры электронных спектров некоторых атомов с помощью оптических спектрометров с высокой разрешающей способностью.

Сверхтонкая структура атомных спектров навела Паули в 1924 г. на мысль о том, что некоторые ядра обладают моментом количества движения (угловым моментом), а, следовательно, и магнитным моментом, взаимодействующим с атомными орбитальными электронами.

Под влиянием внешнего магнитного поля магнитные моменты ядер ориентируются определенным образом, и появляется возможность наблюдать переходы между ядерными энергетическими уровнями, связанными с этими разными ориентациями: переходы, происходящие под действием излучения определенной частоты. Квантование энергетических уровней ядра является прямым следствием квантовой природы углового момента ядра, принимающего 2I + 1 значений. Спиновое квантовое число (спин) I может принимать любое значение, кратное 1/2; наиболее высоким из известных значений I (≥7) обладает 17671Lu. Измеримое наибольшее значение углового момента (наибольшее значение проекции момента на выделенное направление) равно Iħ, где ħ=h/2π, а h - постоянная Планка.

Значения I для конкретных ядер предсказать нельзя, однако было замечено, что изотопы, у которых и массовое число, и атомный номер четные, имеют I = 0, а изотопы с нечетными массовыми числами имеют полуцелые значения спина. Такое положение, когда числа протонов и нейтронов в ядре четные и равны (I = 0), можно рассматривать как состояние с "полным спариванием", аналогичным полному спариванию электронов в диамагнитной молекуле.

Если ядерное спиновое число равно I, то ядро имеет (2I+1) равноотстоящих энергетических уровней; в постоянном магнитном поле с напряженностью H расстояние между наивысшим и наинизшим из этих уровней равно 2mH, где m- максимальное измеримое значение магнитного момента ядра. Отсюда расстояние между соседними уровнями равно mH/I, а частота осциллирующего магнитного поля, которое может вызвать переходы между этими уровнями, равна mH/Ih.

Первые успешные наблюдения ЯМР такого рода были выполнены с основными магнитными полями порядка нескольких кило эрстед, что соответствует частотам осциллирующего магнитного поля в диапазоне 105-108 Гц. Резонансный обмен энергией может происходить не только в молекулярных пучках; его можно наблюдать во всех агрегатных состояниях вещества.

В 1936г. Горнер пытался обнаружить резонанс ядер Li7 во фтористом литии и ядер H1 в алюмокалиевых квасцах. Лишь в конце 1945 года двумя группами американских физиков под руководством Ф. Блоха и Э.М. Пурселла впервые были получены сигналы ядерного магнитного резонанса. Блох наблюдал резонансное поглощение на протонах в воде, а Парселл добился успеха в обнаружении ядерного резонанса на протонах в парафине. За это открытие они в 1952 году были удостоены Нобелевской премии.

 

1.2. Устройство прибора. Основные элементы Устройство и принцип работы масс-спектрометра. Современные масс-спектрометры состоят из нескольких устройств: 1)источника ионов — преобразует составляющие неорганического или органического вещества — нейтральные молекулы и атомы — в заряженные частицы — ионы; 2)микробиологического анализатора — разделяет заряженные ионы по времени пролета в масс-спектрометре определенного расстояния; 3)детектора — фиксирует сигнал ионов.

 

Физические основы метода. Погрешность и ограничения метода, селективность

ИОНИЗАЦИЯ

Наиболее старый и наиболее широко применяемый в современной масс-спектрометрии метод ионизации молекул органических соединений. Для того, чтобы ионизовать органическое вещество его нужно сначала из конденсированной фазы (жидкость, твердое тело) перевести каким-нибудь образом в газовую фазу, например, нагреть. Затем, их нужно ввести в так называемый источник ионов, где они подвергаются бомбардировке пучком электронов, который можно получить нагревая, например, металлическую ленточку (катод). Можно поместить вещество в конденсированной фазе в источник ионов и там его испарить. Электроны - легкие по сравнению с молекулами отрицательно заряженные частицы - сталкиваясь с молекулами вырывают из электронных оболочек электроны и превращают молекулы в ионы. При этом молекулы часто разваливаются на заряженные фрагменты по определенному для каждого соединения механизму. Именно в результате этого процесса в конечном итоге получится масс-спектр - набор рассортированных по массам ионов - несущий информацию о структуре молекулы и, часто, настолько характерный для определенного органического соединения, что его называют "отпечатком пальцев", то есть настолько же индивидуальный как рисунок на пальцах человека. Все это должно происходить в вакууме, иначе электроны слишком быстро зарядят молекулы, составляющие компоненты воздуха, а ионы, образовавшиеся из того соединения, которое нас интересует, слишком быстро вновь превратятся в нейтральные молекулы.

Другой способ ионизации - это ионизация в ионно-молекулярных реакциях, называемая химической ионизацией. При этом способе источник ионов заполняется каким-либо газом при повышенном давлении (типично используется метан или изобутан, очень редко аммиак и другие газы), который ионизуется все тем же электронным ударом, а в результате большой популяции молекул в источнике начинают происходить ионно-молекулярные реакции, ведущие к образованию ионов-реагентов, которые, в свою очередь взаимодействуют с молекулами интересующего нас вещества, ведя к их ионизации. При этом происходит протонирование, т.е. образование положительно заряженных ионов. Вводимые в источник ионов соединения также могут реагировать с "медленными" ("термическими") электронами, которые охотно образуются и блуждают в плазме источника работающего в режиме химической ионизации. При этом взаимодействии происходит так называемый диссоциативный резонансный захват электронов, ведущий к тому, что образуется ион с "лишним" электроном, т.е. отрицательно заряженный.

Такая ионизация в газовой фазе является "мягкой", то есть образовавшиеся ионы не разваливаются на мелкие фрагменты, а скорее остаются крупными кусками либо чуть меньше, чем исходная молекула, либо даже большее ее за счет присоединения других ионов.

 

Этот метод дает меньше информации о том, как устроена структура молекулы, зато с его помощью легче определить ее молекулярную массу. Это касается, в основном, положительно заряженных ионов.

Большим преимуществом химической ионизации с образованием отрицательных ионов является значительное улучшение чувствительности и селективности в отношении избранных соединений (соединений с большим сродством к электрону, например, содержащих атомы галогенов). Предел обнаружения таких соединений может быть снижен до трех порядков.

Для ряда применений очень удобным может оказаться метод PPNICI (Импульсная попеременная регистрация положительных ионов и отрицательных ионов при химической ионизации), реализуемый на ГХ/МС марки FINNIGAN. В этом методе от одной съемки образца получаются две хроматограммы (и соответственно, две совокупности масс-спектров): одна по положительно заряженным ионам, другая - по отрицательно. Тандемная масс-спектрометрия весьма полезна для того, чтобы использовать информационно значимые ионы, образовавшиеся при химической ионизации, и подвергнуть дополнительной фрагментации, позволяющей выявить структуры фрагментов молекулы.

К сожалению, очень многие органические вещества невозможно испарить без разложения, то есть перевести в газовую фазу. А это значит, что их нельзя ионизовать электронным ударом. Но среди таких веществ почти все, что составляет живую ткань (белки, ДНК и т.д.), физиологически активные вещества, полимеры, то есть все то, что сегодня представляет особый интерес. Масс-спектрометрия не стояла на месте и последние годы были разработаны специальные методы ионизации таких органических соединений. Сегодня используются, в основном, методы ионизации при атмосферном давлении - ионизация в электроспрее (ESI) или - химическая ионизация при атмосферном давлении - APCI (и ее подвид с дополнительной фотоионизацией - APPI), а также ионизация лазерной десорбцией при содействии матрицы (MALDI).

В первом случае жидкость (интересующие нас соединения с растворителем) вырывается под давлением вместе с коаксиально подаваемым разогретым газом (азотом) из узкого капилляра (на самом деле, иглы, которая находится под повышенным потенциалом - 5 - 10 кВ) с огромной скоростью и прямо в этой струе мелкодисперсного тумана с оболочек молекул срываются электроны, превращая их в ионы. Большая часть растворителя при движении этой струи переходит в газовую фазу и не попадает в отверстие входного конуса источника ионов API.

В режиме химической ионизации при атмосферном давлении потенциал прикладывается не к игле, через которую поступает жидкость, а к электроду в области распыления, что приводит к образованию коронного разряда. В этом случае фрагментация значительно меньше, чем в предыдущем - электроспрее (ESI).

В методе MALDI лазерный луч вырывает ионы с поверхности мишени, на которую нанесен образец со специально подобранной матрицей.

Для ионизации неорганических материалов (металлы, сплавы, горные породы и т.д.) требуется использование других методов. Энергии связи атомов в твердом теле гораздо больше и значительно более жесткие методы необходимо использовать для того, чтобы разорвать эти связи и получить ионы

 

МАСС-АНАЛИЗАТОРЫ

Поскольку ионы - это заряженные частицы, мы можем с помощью электрического поля вытянуть их из той области, где они образовались. Теперь, начинается второй этап масс-спектрометрического анализа - сортировка ионов по массам (точнее по отношению массы к заряду, или m/z), собственно то, что дало имя этому методу. Это происходит в той части масс-спектрометра, которая называется "масс-анализатором".

Двойная фокусировка

Все масс-анализаторы используют физические законы движения заряженных частиц. Согласно физическим законам траектория заряженных частиц в магнитном поле искривляется, а радиус кривизны зависит от массы частиц. Именно это используется для анализа ионов по массам. Для того, чтобы увеличить разрешение, на пути ионов устанавливается еще и электростатический анализатор. Магнитные масс-спектрометры имеют высокое разрешение и могут использоваться со всеми видами ионизации.

Несмотря на значительные преимущества современных магнитных масс-анализаторов перед остальными (рекордная чувствительность, однозначность идентификации, большой рабочий диапазон масс, широкий линейный диапазон), они обладают двумя основными "недостатками" - эти приборы большие как по размерам, так и по стоимости. Там, где нельзя без них обойтись, им нет альтернативы (органический анализ с высоким разрешением, анализ изотопных соотношений, элементный анализ на предельной чувствительности), но в современном мире существуют тысячи аналитических применений масс-спектрометрии, для многих из них годятся приборы и меньшего калибра.

Квадруполь

Квадруполь представляет собой четыре стержня, к которым попарно в противоположной полярности подается определенная комбинация постоянного и радиочастотного переменного напряжений. Ионы, влетающие параллельно оси этих стержней, попадают в гиперболическое поле и оно, в зависимости от соотношения их массы (как всегда, m/z) и частоты, пропускаются этим полем или не пропускаются дальше. Создание квадрупольных масс-анализаторов стало революцией в масс-спектрометрии. Магнитные масс-спектрометры требуют использования высоких напряжений (тысячи вольт), а квадрупольные нет, и это упрощает его конструкцию, меньшие размеры вакуумной части упрощают систему создания вакуума. Масс-спектрометры уменьшились в размерах, стали проще в эксплуатации и, что самое главное, намного дешевле, что открыло возможность использовать этот аналитический метод многим тысячам пользователей.



2015-11-07 1560 Обсуждений (0)
История протонного магнитного резонанса 0.00 из 5.00 0 оценок









Обсуждение в статье: История протонного магнитного резонанса

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1560)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)