Мегаобучалка Главная | О нас | Обратная связь

Характеристики сплава сталь 35Л




МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«Чувашский государственный университет имени И.Н. Ульянова»

(ФГБОУ ВПО «ЧГУ им. И.Н. Ульянова)

 

МАШИНОСТРОИТЕЛЬНЫЙ ФАКУЛЬТЕТ

 

КАФЕДРА «МАТЕРИАЛОВЕДЕНИЯ И МЕТАЛУРГИЧЕСКИХ ПРОЦЕСОВ»

 

 

КУРСОВОЙ ПРОЕКТ

 

ОТЛИВКА «СТАКАН»

 

Выполнил:

Студент гр. МС 31-13

Игнатьев Григорий Валерьевич

Проверил:

ст. преп. Иванова Людмила

Александровна

 

 

Чебоксары 2015

 

Оглавление

Характеристики сплава сталь 35Л. 3

Чертеж детали. 7

Чертеж детали. 8

Выбор оборудования. 9

Технология изготовления полу форм. 9

Выбор формовочной смеси. 10

Выбор стержневой смеси. 11

Противопригарные материалы. 11

Выбор противопригарных покрытий. 14

Нанесение элементов технологии отливки на чертёж детали. 15

Чертеж отливки. 16

Технологичная часть. 17

Чертеж отливки с литниковой системой. 20

Расположение отливки в опоках. 21

 

 


 

Характеристики сплава сталь 35Л.

Термообработка: Нормализация 860 - 880oC, Отпуск 600 - 630oC.

Твердость материала: HB 10 -1 = 137 - 229 Мпа

Температура критических точек: Ac1 = 730 , Ac3(Acm) = 802 , Ar3(Arcm) = 795 , Ar1 = 691

Свариваемость материала: ограниченно свариваемая. Способы сварки: РДС, АДС под газовой защитой, ЭШС. Рекомендуется подогрев и последующая термообработка.

Флокеночувствительность: не чувствительна.

Склонность к отпускной хрупкости: не склонна.

Обрабатываемость резанием: в термообработанном состоянии при HB 160 К υ тв. спл=1,2 и Кυб.ст=0,9

Температура начала затвердевания, °С: 1480-1490

Показатель трещиноустойчивости, Кт.у.: 0,8

Склонность к образованию усадочных раковин, Ку.р.: 1,2

Жидкотекучесть, Кж.т.: 1,0

Линейная усадка, %: 2.2 - 2.3

Склонность к образованию усадочной пористости, Ку.п. 1,0

Расшифровка стали 35Л: буква Л в конце означает, что перед нами литейная сталь, а цифра 35 свидетельствует о содержании 0,35% углерода.

Структура и особенности стали марки 35Л: среднеуглеродистая литая сталь 35Л без термообработки обычно имеет феррито-перлитную структуру с видманштеттовым (ориентированным) распределением феррита и наличием ферритной сетки по границам бывших астеничных зерен (рис. 137, а). После нормализации от 850- 870° С, а также после нормализации и высокого отпуска при 620-640° С видны остатки неравномерного ориентированного распределения феррита в виде крупных выделений и остатков сетки. После нормализации от температуры 850-870° С с последующим улучшением литая сталь характеризуется также большой структурной неоднородностью. Применение высокотемпературной нормализации от 950-970° С или нормализации от 950-970° С с последующим улучшением позволяет значительно измельчить феррит, ликвидировать его ориентированность, уменьшить общую неоднородность структуры.



Рентгенографическим исследованием показано, что после фазовой перекристаллизации с нагревом выше Ac3 до 850-870° С обычно восстанавливается исходная внутризеренная ориентировка. Только после высокотемпературного нагрева до 920-960° С полностью ликвидируется наследственная текстура.

Непосредственные наблюдения структурных изменений при нагреве до 1000° С стали 35Л в высокотемпературном микроскопе показали, что в интервале 720-800° С проходит фазовая перекристаллизация, сопровождающаяся образованием большого количества новых границ внутри ферритных игл и перлитных колоний. В интервале 900-930° С вместо большого количества мелких зерен возникают крупные зерна. После 960° С наблюдается быстрый собирательный рост и образование крупных зерен. Однако только при температурах выше 1050° С средний размер зерен аустенита близок к размеру крупного исходного зерна литой стали.

Зарождение аустенита происходит как внутри ферритных игл на субграницах, так и в перлитных колониях на межфазных границах феррита и карбида. При нагреве выше 850° С проходят процессы миграции границ зерен аустенита, которые возникли при фазовом превращении на месте перлитных колоний. Эти зерна аустенита растут за счет поглощения полигонизованных ориентированных зерен, возникших в игольчатом феррите. Разрушение внутризеренной текстуры в литой углеродистой стали происходит в результате миграции границ и собирательной рекристаллизации аустенита, возникшего в перлитных колониях.

По видимому, при нагреве до 900-930° С проходят также процессы растворения карбидных частиц и примесных фаз литой стали, задерживающих процессы рекристаллизации. Следующая за высокотемпературным нагревом повторная нормализация или закалка с температур лишь немного выше Ас3 (850° С) обеспечивает повышение однородности и измельчение структуры литой стали. В результате такой обработки значительно повышаются характеристики размерной стабильности и механических свойств металла.

Наиболее высокие значения характеристик сопротивления микропластическим деформациям (предела упругости и релаксационной стойкости) и механических свойств получены на образцах, которые были подвергнуты нормализации при 950-970° С перед окончательной термообработкой. Относительно более низкие свойства имели образцы после обычной нормализации при 850-870° С. Особенно эффективна высокотемпературная термообработка образцов после литья для повышения предела упругости, релаксационной стойкости и характеристик пластичности. При этом после одинаковых режимов окончательной термообработки в образцах, подвергнутых предварительной высокотемпературной нормализации в сравнении с обычной обработкой, свойства возрастают: предел упругости на 10-30%, релаксационная стойкость на 20-100%, характеристики пластичности на 50-100%. При одинаковой пластичности (б~8%, - 16%) после нормализации при 950-970° С и улучшения предел упругости образцов составляет 64-66 кгс/мм2, а после нормализации с 850-870° С с последующим улучшением предел упругости не превышает 50 кгс/мм2.

Микропластические деформации в доэвтектоидной стали развиваются прежде всего в отдельных зернах избыточного феррита как наименее прочной структурной составляющей стали. Влияние размера ферритной составляющей на сопротивление микропластическим деформациям аналогично рассмотренному выше (гл. II) влиянию размера зерна на релаксационную стойкость стали: чем меньше размер ферритной составляющей и равномерное ее распределение в структуре, тем выше предел упругости и релаксационная стойкость литой стали.

Таким образом, применение предварительной термообработки, приводящей к измельчению структуры и повышению ее однородности, позволяет обеспечить оптимальное сочетание свойств литых стальных деталей для точного машиностроения и приборостроения.

Вид поставки: отливки ГОСТ 977-88.
Использование в промышленности: станины прокатных станов, зубчатые колеса, тяги, бегунки, задвижки, балансиры, диафрагмы, катки, валки, кронштейны и другие детали, работающие под действием средних статических и динамических нагрузок.

 


 

Чертеж детали.


 

Чертеж детали.


 

Выбор оборудования.

Созданиеполу форм.

Выбранный метод создания полу форм - ручная формовка на плацу с пневмотрамбовкой.

 





Читайте также:





Читайте также:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)