Мегаобучалка Главная | О нас | Обратная связь


Понятие локальной вычислительной сети (ЛВС)



2015-11-07 3464 Обсуждений (0)
Понятие локальной вычислительной сети (ЛВС) 4.75 из 5.00 4 оценки




Пример 1

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ОБЩАЯ ЧАСТЬ

Понятие локальной вычислительной сети (ЛВС)

Архитектура построения компьютерных сетей

Структура стандартов IEEE 802

Стандарты Ethernet

Программы проверки сети

ЭКСПЛУАТАЦИОННО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ

Характеристика предприятия

План сети

Сетевое оборудование

D-Link DES-1016D

D-Link DES-1008D

HardLink HS-16D

Кабель витая пара (UTP), категория 5e, 4 пары

LAN тестер ST-248 для BNC, RJ-45

Инструмент для обжима коннекторов

Сетевые настройки

Локальные настройки компьютеров

Настройка компьютеров учащихся

Настройка компьютеров администрации

Настройка антивирусной безопасности

Проверка сети

ЭКОНОМИЧЕСКАЯ ЧАСТЬ

Организационная структура подразделения по обслуживанию ВТ и КС

Характеристика основных фондов

Расчет производственной площади

Расчет капитальных затрат

Состав и структура персонала

Определение состава и структуры персонала

Расчет бюджета рабочего времени работников занятых основной производственной деятельностью

Расчет фонда оплаты труда руководителей, специалистов и служащих

Расчет среднемесячной заработной платы

Расчет заработной платы на работы по проведению технического обслуживания и ремонта ЛВС

Расчет затрат на материалы и запасные части

Расчет общепроизводственных расходов

Расчет себестоимости

Расчет себестоимости работ по техническому обслуживанию и ремонту ЛВС

Расчет себестоимости годового объема работ

Технико-экономические показатели подразделения по обслуживанию ВТ и КС

ОХРАНА ТРУДА

Мероприятия по технике безопасности на рабочем месте

Специальные требования по пожарной безопасности

Системы защиты оператора ПЭВМ от поражений электрическим током

Требования к микроклимату и шуму

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Современная эпоха характеризуется стремительным процессом информатизации общества. Это сильней всего проявляется в росте пропускной способности и гибкости информационных сетей. Полоса пропускания в расчете на одного пользователя стремительно увеличивается благодаря нескольким факторам. Во-первых, растет популярность приложений World Wide Web и количество электронных банков информации, которые становятся достоянием каждого человека. Падение цен на компьютеры приводит к росту числа домашних ПК, каждый из которых потенциально превращается в устройство, способное подключиться к сети Internet. Во-вторых, новые сетевые приложения становятся более требовательными в отношении полосы пропускания - входят в практику приложения Internet, ориентированные на мультимедиа и видеоконференцсвязь, когда одновременно открывается очень большое количество сессий передачи данных. Как результат, наблюдается резкий рост в потреблении ресурсов Internet - по оценкам средний объем потока информации в расчете на одного пользователя в мире увеличивается в 8 раз каждый год.

Локальные вычислительные сети представляют собой системы распределенной обработки данных и, в отличие от глобальных и региональных вычислительных сетей, охватывают небольшие территории (диаметром 5 - 10 км) внутри отдельных контор, банков, бирж, вузов, учреждений, научно-исследовательских организаций и т.п.. При помощи общего канала связи ЛВС может объединять от десятков до сотен абонентских узлов, включающих персональные компьютеры (ПК), внешние запоминающие устройства (ЗУ), дисплеи, печатающие и копирующие устройства, кассовые и банковские аппараты, интерфейсные схемы и др.. ЛВС могут подключаться к другим локальным и большим (региональным, глобальным) сетям ЭВМ с помощью специальных шлюзов, мостов и маршрутизаторов, реализуемых на специализированных устройствах или на ПК с соответствующим программным обеспечением.

1. ОБЩАЯ ЧАСТЬ

Понятие локальной вычислительной сети (ЛВС)

Локальная сеть (ЛВС) представляет собой коммуникационную систему, позволяющую совместно использовать ресурсы компьютеров, подключенных к сети, таких как принтеры, плоттеры, диски, модемы, приводы CD-ROM и другие периферийные устройства. Локальная сеть обычно ограничена территориально одним или несколькими близко расположенными зданиями.

Как следует из названия, локальная вычислительная сеть является системой, которая охватывает относительно небольшие расстояния. Международный комитет IEEE802 (Институт инженеров по электронике и электротехнике, США), специализирующийся на стандартизации в области ЛВС, дает следующее определение этим системам: “Локальные вычислительные сети отличаются от других видов сетей тем, что они обычно ограничены умеренной географической областью, такой, как группа рядом стоящих зданий, и, в зависимости от каналов связи осуществляют передачу данных в диапазонах скоростей от умеренных до высоких с низкой степенью ошибок... Значения параметров области, общая протяженность, количество узлов, скорость передачи и топология ЛВС могут быть самыми различными, однако комитет IEEE802 основывает ЛВС на кабелях вплоть до нескольких километров длины, поддержки нескольких сотен станций разнообразной топологии при скорости передачи информации порядка 1-2 и более Мбит/с”.

Современная стадия развития ЛВС характеризуется почти повсеместным переходом от отдельных, как правило, уже существующих, сетей, к сетям, которые охватывают все предприятие (фирму, компанию) и объединяют разнородные вычислительные ресурсы в единой среде. Такие сети называются корпоративными.

Важнейшей характеристикой ЛВС является скорость передачи информации. В идеале при посылке и получении данных через сеть время отклика должно быть таким же как если бы они были получены от ПК пользователя, а не из некоторого места вне сети. Это требует скорости передачи данных от 1 до 10 Мбит/с и более.

Специфическими компонентами ЛВС являются серверы. Они управляют функции управления распределением сетевых ресурсов общего доступа. Серверы - это аппаратно-программные системы. Аппаратным средством обычно является достаточно мощный ПК, мини-ЭВМ, большая ЭВМ или компьютер, спроектированный специально как сервер. ЛВС может иметь несколько серверов для управления сетевыми ресурсами, однако всегда должен быть один или более файл-сервер или сервер без данных. Он управляет внешними запоминающими устройствами общего доступа и позволяет организовать определенные базы данных.

Рабочими станциями в ЛВС служат, как правило, персональные компьютеры. Отдельные пользователи (различные должностные лица подразделений фирмы) реализуют на рабочих станциях свои прикладные системы. В основном это определенные функциональные задачи (ФЗ) или комплексы задач (Функциональные подсистемы). Выполнение любой ФЗ связано с понятием вычислительного процесса или просто процесса.

1.2 Архитектура построения компьютерных сетей

Сетевая архитектура - это совокупность стандартов, топологий и протоколов, необходимых для создания работоспособной сети.

Локальная вычислительная сеть ЛВС, локальная сеть; (англ. Local Area Network, LAN) -- компьютерная сеть, покрывающая обычно относительно небольшую территорию или небольшую группу зданий (дом, офис, фирму, институт). Также существуют локальные сети, узлы которых разнесены географически на расстояние более 12 500 км (космические станции и орбитальные центры). Несмотря на такое расстояние, подобные сети относят к локальным. Кольцом -- базовая топология компьютерной сети, в которой рабочие станции подключены последовательно друг к другу, образуя замкнутую сеть.( Рисунок 1 - Схема ЛВС топология кольцо)

Рисунок 1

Работа в сети типа кольцо

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков -- пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Достоинства

Простота установки;

Практически полное отсутствие дополнительного оборудования;

Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки

Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;

Сложность конфигурирования и настройки;

Сложность поиска неисправностей;

Применение

Наиболее широкое применение получила в оптоволоконных сетях. Используется в стандартах FDDI, Token ring.

Звезда-базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно сетевой концентратор), образуя физический сегмент сети. Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило "дерево"). ( Рисунок 2 - Схема ЛВС топология звезда)

Рисунок 2

Рабочая станция, которой нужно послать данные, отсылает их на концентратор, а тот определяет адресата и отдаёт ему информацию. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня - коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт - получателю. Одновременно может быть передано несколько пакетов. Сколько - зависит от коммутатора

Достоинства

· выход из строя одной рабочей станции не отражается на работе всей сети в целом;

· хорошая масштабируемость сети;

· лёгкий поиск неисправностей и обрывов в сети;

· высокая производительность сети (при условии правильного проектирования);

· гибкие возможности администрирования.

Недостатки

· выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;

· для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;

· конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Применение

Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара. UTP категория 3 или 5.

Топология типа шимна, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала. (Рисунок 3 - Структура ЛВС топология шина)

Рисунок 3

Работа в сети

Отправляемое рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет -- кому адресовано сообщение и если ей, то обрабатывает его. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» остальным станциям.

При построении больших сетей возникает проблема ограничения на длину связи между узлами, в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами -- повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров. ( Рисунок 4 - Сегменты соединяющие различные устройства)

Рисунок 4

Достоинства

· Небольшое время установки сети;

· Дешевизна (требуется меньше кабеля и сетевых устройств);

· Простота настройки;

Выход из строя рабочей станции не отражается на работе сети;

Недостатки

· Любые неполадки в сети, как обрыв кабеля, выход из строя терминатора полностью уничтожают работу всей сети;

· Сложная локализация неисправностей;

· С добавлением новых рабочих станций падает производительность сети.

1.3 Структура стандартов IEEE 802

В 1980 году в институте IEEE был организован комитет 802 по стандартизации локальных сетей, в результате работы которого было принято семейство стандартов IEEE 802-х, которые содержат рекомендации по проектированию нижних уровней локальных сетей. Позже результаты работы этого комитета легли в основу комплекса международных стандартов ISO 8802-1...5. Эти стандарты были созданы на основе очень распространенных фирменных стандартов сетей Ethernet, ArcNet и Token Ring.

Помимо IEEE в работе по стандартизации протоколов локальных сетей принимали участие и другие организации. Так, для сетей, работающих на оптоволокне, американским институтом по стандартизации ANSI был разработан стандарт FDDI, обеспечивающий скорость передачи данных 100 Мб/с. Работы по стандартизации протоколов ведутся также ассоциацией ЕСМА, которой приняты стандарты ЕСМА-80, 81, 82 для локальной сети типа Ethernet и впоследствии стандарты ЕСМА-89,90 по методу передачи маркера.

Стандарты семейства IEEE 802.X охватывают только два нижних уровня семи-уровневой модели OSI - физический и канальный. Это связано с тем, что именно эти уровни в наибольшей степени отражают специфику локальных сетей. Старшие же уровни, начиная с сетевого, в значительной степени имеют общие черты как для локальных, так и для глобальных сетей.

Специфика локальных сетей также нашла свое отражение в разделении канального уровня на два подуровня, которые часто называют также уровнями. Канальный уровень (Data Link Layer) делится в локальных сетях на два подуровня:

· логической передачи данных (Logical Link Control, LLC);

· управления доступом к среде (Media Access Control, MAC).

Уровень MAC появился из-за существования в локальных сетях разделяемой среды передачи данных. Именно этот уровень обеспечивает корректное совместное использование общей среды, предоставляя ее в соответствии с определенным алгоритмом в распоряжение той или иной станции сети. После того как доступ к среде получен, ею может пользоваться более высокий уровень - уровень LLC, организующий передачу логических единиц данных, кадров информации, с различным уровнем качества транспортных услуг. В современных локальных сетях получили распространение несколько протоколов уровня MAC, реализующих различные алгоритмы доступа к разделяемой среде. Эти протоколы полностью определяют специфику таких технологий, как Ethernet, Fast Ethernet, Gigabit Ethernet, Token Ring, FDDI, l00VG-AnyLAN.

Уровень LLC отвечает за передачу кадров данных между узлами с различной степенью надежности, а также реализует функции интерфейса с прилегающим к нему сетевым уровнем. Именно через уровень LLC сетевой протокол запрашивает у канального уровня нужную ему транспортную операцию с нужным качеством. На уровне LLC существует несколько режимов работы, отличающихся наличием или отсутствием на этом уровне процедур восстановления кадров в случае их потери или искажения, то есть отличающихся качеством транспортных услуг этого уровня.

Протоколы уровней MAC и LLC взаимно независимы - каждый протокол уровня MAC может применяться с любым протоколом уровня LLC, и наоборот. Стандарты IEEE 802 имеют достаточно четкую структуру, приведенную на рисунке 5.

Рисунок 5

Эта структура появилась в результате большой работы, проведенной комитетом 802 по выделению в разных фирменных технологиях общих подходов и общих функций, а также согласованию стилей их описания. В результате канальный уровень был разделен на два упомянутых подуровня. Описание каждой технологии разделено на две части: описание уровня MAC и описание физического уровня. Как видно из рисунка, практически у каждой технологии единственному протоколу уровня MAC соответствует несколько вариантов протоколов физического уровня (на рисунке в целях экономии места приведены только технологии Ethernet и Token Ring, но все сказанное справедливо также и для остальных технологий, таких как ArcNet, FDDI, l00VG-AnyLAN).

Над канальным уровнем всех технологий изображен общий для них протокол LLC, поддерживающий несколько режимов работы, но независимый от выбора конкретной технологии. Стандарт LLC курирует подкомитет 802.2. Даже технологии, стандартизованные не в рамках комитета 802, ориентируются на использование протокола LLC, определенного стандартом 802.2, например протокол FDDI, стандартизованный ANSI.

Особняком стоят стандарты, разрабатываемые подкомитетом 802.1. Эти стандарты носят общий для всех технологий характер. В подкомитете 802.1 были разработаны общие определения локальных сетей и их свойств, определена связь трех уровней модели IEEE 802 с моделью OSI. Но наиболее практически важными являются стандарты 802.1, которые описывают взаимодействие между собой различных технологий, а также стандарты по построению более сложных сетей на основе базовых топологий. Эта группа стандартов носит общее название стандартов межсетевого взаимодействия (internetworking). Сюда входят такие важные стандарты, как стандарт 802. ID, описывающий логику работы моста/коммутатора, стандарт 802.1Н, определяющий работу транслирующего моста, который может без маршрутизатора объединять сети Ethernet и FDDI, Ethernet и Token Ring и т. п. Сегодня набор стандартов, разработанных подкомитетом 802.1, продолжает расти. Например, недавно он пополнился важным стандартом 802.1Q, определяющим способ построения виртуальных локальных сетей VLAN в сетях на основе коммутаторов.

Стандарты 802.3,802.4,802.5 и 802.12 описывают технологии локальных сетей, которые появились в результате улучшений фирменных технологий, легших в их основу. Так, основу стандарта 802.3 составила технология Ethernet, разработанная компаниями Digital, Intel и Xerox (или Ethernet DIX), стандарт 802.4 появился | как обобщение технологии ArcNet компании Datapoint Corporation, а стандарт 802.5 в основном соответствует технологии Token Ring компании IBM.

Исходные фирменные технологии и их модифицированные варианты - стандарты 802.х в ряде случаев долгие годы существовали параллельно. Например, технология ArcNet так до конца не была приведена в соответствие со стандартом 802.4 (теперь это делать поздно, так как где-то примерно с 1993 года производство оборудования ArcNet было свернуто). Расхождения между технологией Token Ring и стандартом 802.5 тоже периодически возникают, так как компания IBM регулярно вносит усовершенствования в свою технологию и комитет 802.5 отражает эти усовершенствования в стандарте с некоторым запозданием. Исключение составляет технология Ethernet. Последний фирменный стандарт Ethernet DIX был принят в 1980 году, и с тех пор никто больше не предпринимал попыток фирменного развития Ethernet. Все новшества в семействе технологий Ethernet вносятся только в результате принятия открытых стандартов комитетом 802.3.

Более поздние стандарты изначально разрабатывались не одной компанией, а группой заинтересованных компаний, а потом передавались в соответствующий подкомитет IEEE 802 для утверждения. Так произошло с технологиями Fast Ethernet, l00VG-AnyLAN, Gigabit Ethernet. Группа заинтересованных компаний образовывала сначала небольшое объединение, а затем по мере развития работ к нему присоединялись другие компании, так что процесс принятия стандарта носил открытый характер.

Сегодня комитет 802 включает следующий ряд подкомитетов, в который входят как уже упомянутые, так и некоторые другие:

· 802.1 - Internetworking - объединение сетей;

· 802.2 - Logical Link Control, LLC - управление логической передачей данных;

· 802.3 - Ethernet с методом доступа CSMA/CD;

· 802.4 - Token Bus LAN - локальные сети с методом доступа Token Bus;

· 802.5 - Token Ring LAN - локальные сети с методом доступа Token Ring;

· 802.6 - Metropolitan Area Network, MAN - сети мегаполисов;

· 802.7 - Broadband Technical Advisory Group - техническая консультационная группа по широкополосной передаче;

· 802,8 - Fiber Optic Technical Advisory Group - техническая консультационная группа по волоконно-оптическим сетям;

· 802.9 - Integrated Voice and data Networks - интегрированные сети передачи голоса и данных;

· 802.10 - Network Security - сетевая безопасность;

· 802.11 - Wireless Networks - беспроводные сети;

· 802.12 - Demand Priority Access LAN, l00VG-AnyLAN - локальные сети с методом доступа по требованию с приоритетами.

1.3.1 Стандарты Ethernet

Ethernet на тонком кабеле (10Base2)

Для Ethernet на тонком кабеле максимальная длина сегмента составляет 185 м. К сегменту должно быть подключено не более 30 компьютеров. При необходимости охватить локальной сетью расстояние большее, чем это позволяет кабельная система, применяются дополнительные устройства - репитеры (Repeater), или повторители. Традиционный репитер имеет 2-портовое исполнение, т.е. он может объединить 2 сегмента по 185 м. Репитер может находиться в любом месте сегмента, не обязательно в конце. В сети может быть не больше 4 репитеров. Это позволяет получить сеть максимальной протяженностью 925 м. При использовании многопортовых репитеров общее их число в сети может быть больше 4, но надо подключить их по такой схеме, чтобы между любыми двумя рабочими станциями не оказалось более 4 репитеров. Из пяти последовательных сегментов компьютеры должны находится только на трех. Запомните правило 5-4-3: 5 сегментов, 4 репитера, 3 сегмента для подключения рабочих станций.

Ethernet на толстом кабеле (10Base5)

Длина сегмента для Ethernet на толстом кабеле составляет 500 м, к одному сегменту можно подключить до 100 рабочих станций. Для подключения узла сети к толстому кабелю используется дополнительное устройство, называемое трансивером. Трансивер подсоединяется к главному кабелю сети при помощи специальной иглы ("зуб вампира"). От него к компьютеру идет специальный трансиверный кабель, максимальная длина которого составляет 50 м, Минимальное расстояние между трансиверами 2.5 м. На обоих его концах находятся AUI-разъемы. Правила использования репитеров для Ethernet на толстом кабеле аналогичны правилам для Ethernet на тонком кабеле.

Ethernet на витой паре (10BaseT)

Основным узлом сети Ethernet на витой паре является концентратор (hub). Каждый PC должен быть подключен к нему с помощью сегмента кабеля. Длина каждого сегмента не должна превышать 100 м., минимальная длина кабеля - 2.5 м. Концентраторы выпускаются на разное количество портов, соответственно, к нему можно подключить такое же количество PC. Концентраторы можно объединять, подключая друг к другу через кроссовер-порт и получая сложную каскадную структуру. При этом надо придерживаться некоторых правил: не должно получаться закольцованных путей между двумя любыми станциями не должно быть более 4 концентраторов

Многие концентраторы имеют дополнительные разъемы для подключения тонкого и/или толстого кабеля Ethernet (BNC- и AUI-разъемы). Это позволяет объединять витую пару с коаксиальными сегментами. На одном концентраторе должен быть задействован только один из двух коаксиальных разъемов (или BNC, или AUI). Активные концентраторы регенерируют и передают сигналы дальше так же, как это делают репитеры. Коммутаторы (switches) направляют пакеты по оптимальному на данный момент маршруту между источником и получателем с целью достижения наиболее эффективного использования имеющейся полосы пропускания. Сети с коммутацией пакетов обладают очень высокой производительностью.

Ethernet на витой паре (100BaseTX)

Сеть строится также по топологии "звезда", аналогично спецификации 10BaseT, Также основой сети является концентратор, к которому PC подключаются кабелями с максимальной длинной 100м. Однако, при каскадировании концентраторов FastEthernet, расстояние между ними должно быть не более 5м (при использовании концентраторов класса II). Таким образом, расстояние между двумя наиболее удаленными компьютерами будет составлять не более 205м. Решить эту проблему можно используя коммутаторы (Switching hub). Коммутирующий концентратор делит сеть на несколько доменов коллизий и таким образом позволяет подключать "uplink" длиной до 100м

1.4 Программы проверки сети

ping -- утилита для проверки соединений в сетях на основе TCP/IP.

Она отправляет запросы (ICMP Echo-Request) протокола ICMP указанному узлу сети и фиксирует поступающие ответы (ICMP Echo-Reply). Время между отправкой запроса и получением ответа (RTT, от англ. Round Trip Time) позволяет определять двусторонние задержки (RTT) по маршруту и частоту потери пакетов, то есть косвенно определять загруженность на каналах передачи данных и промежуточных устройствах.

Также пингом иногда ошибочно называют время, затраченное на передачу пакета информации в компьютерных сетях от клиента к серверу и обратно от сервера к клиенту. Это время называется лагом (англ. отставание; задержка, запаздывание) или собственно задержкой и измеряется в миллисекундах. Лаг связан со скоростью соединения и загруженностью каналов на всём протяжении от клиента к серверу.

Полное отсутствие ICMP-ответов может также означать, что удалённый узел (или какой-либо из промежуточных маршрутизаторов) блокирует ICMP Echo-Reply или игнорирует ICMP Echo-Request.

Программа ping является одним из основных диагностических средств в сетях TCP/IP и входит в поставку всех современных сетевых операционных систем. Функциональность ping также реализована в некоторых встроенных ОС маршрутизаторов, доступ к результатам выполнения ping для таких устройств по протоколу SNMP определяется RFC 2925 (Definitions of Managed Objects for Remote Ping, Traceroute, and Lookup Operations).

Так как для отправки ICMP-пакетов требуется создавать raw-сокеты, для выполнения программы ping в unix-системах необходимы права суперпользователя. Чтобы обычные пользователи могли использовать ping в правах доступа файла /bin/ping устанавливают SUID-бит.

traceroute -- это служебная компьютерная программа, предназначенная для определения маршрутов следования данных в сетях TCP/IP. Traceroute основана на протоколе ICMP.

Программа traceroute выполняет отправку данных указанному узлу сети, при этом отображая сведения о всех промежуточных маршрутизаторах, через которые прошли данные на пути к целевому узлу. В случае проблем при доставке данных до какого-либо узла программа позволяет определить, на каком именно участке сети возникли неполадки. Здесь хочется отметить, что программа работает только в направлении от источника пакетов и является весьма грубым инструментом для выявления неполадок в сети. В силу особенностей работы протоколов маршрутизации в сети Интернет, обратные маршруты часто не совпадают с прямыми, причем это справедливо для всех промежуточных узлов в трейсе. Поэтому, ICMP ответ от каждого промежуточного узла может идти своим собственным маршрутом, затеряться или прийти с большой задержкой, хотя в реальности с пакетами которые адресованы конечному узлу этого не происходит. Кроме того, на промежуточных маршрутизаторах часто стоит ограничение числа ответов ICMP в единицу времени, что приводит к появлению ложных потерь.

traceroute входит в поставку большинства современных сетевых операционных систем. В системах Microsoft Windows эта программа носит название tracert, а в системах GNU/Linux, Cisco IOS и Mac OS -- traceroute.

2. ЭКСПЛУАТАЦИОННО-ТЕХНОЛОГИЧЕСКИЙ РАЗДЕЛ



2015-11-07 3464 Обсуждений (0)
Понятие локальной вычислительной сети (ЛВС) 4.75 из 5.00 4 оценки









Обсуждение в статье: Понятие локальной вычислительной сети (ЛВС)

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3464)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)