Многофакторный линейный регрессионный анализ
Техника многофакторного регрессионного анализа в MS Excel практически не отличается от техники двухфакторного – используется тот же самый инструмент – Регрессия из пакета анализа. При этом предполагается, что в исходной таблице, описывающей случайные данные, каждый следующий столбец содержит выборку значений следующей по порядку случайной переменной; в соответствующем окошке указывается сплошная область значений влияющих переменных (факторов) многофакторной линейной модели. Что касается сути самого анализа, в многофакторной регрессионной модели дополнительно учитываются и анализируются следующие характерные аспекты: Ø коэффициент многофакторной детерминации (определение аналогично двухфакторной модели); с учетом сокращения степеней свободы, вызванным многофакторностью, применяется скорректированный коэффициент многофакторной детерминации Ø тест общей значимости качества регрессии; производится на основе статистики Фишера ( Ø парциальные (частные) коэффициенты корреляции между факторами; парциальные коэффициенты корреляции вычисляются между каждым их влияющих факторов и зависимой переменной, очищенные от влияния остальных факторов. Так, например, для 3-факторной линейной регрессионной модели Специальным приемом в многофакторном регрессионном анализе явлений и процессов с наличием в них резких изменений (шоков) является использование грубых (шоковых) переменных. Присутствие шоков в модельных данных часто можно определить визуально (например, по виду диаграммы рассеяния). Шоковые переменные обычно задаются как бинарные, т.е. могут принимать только два различных значения – чаще всего 0 и 1. С их помощью моделируются резкие изменения в модели, вызванные психологическими, социальными, экономическими и т.п. стрессами. Дополнительная шоковая переменная D = (0,1) используется в технике регрессионного анализа наравне с другими переменными. С использованием техники многофакторного регрессионного анализа проводится также статистический анализ распределенных лаговых моделей. Лаговые (с задержками) модели часто возникают в практике анализа случайных временных рядов; в моделях такого сорта предполагается, что на зависимую переменную оказывают влияние значения некоторой однородной объясняющей переменной, но в различные моменты (периоды) времени T. Общая форма такой модели выглядит следующим образом: Приведение к стандартному виду такой «многофакторной» модели очевидно – «смещенные во времени» переменные рассматриваются как «независимые». Принципиальное отличие лаговой модели от «чистой» многофакторной – наличие сильных корреляций между «соседними» факторами. Самостоятельно: объяснить каково должно быть соотношение между
Популярное: Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (803)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |