СТАЦИОНАРНОЕ ДВИЖЕНИЕ ИДЕАЛЬНОЙ ЖИДКОСТИ. УРАВНЕНИЕ БЕРНУЛЛИ
Рассмотрим идеальную жидкость. Идеальная жидкость – жидкость, плотность которой не зависит от давления и постоянна в любой пространственной области, а вязкость (внутреннее трение) отсутствует. При движении идеальной жидкости не происходит превращения механической энергии в тепловую, то есть механическая энергия жидкости сохраняется. Рассмотрим стационарное течение идеальной жидкости в каком-либо потенциальном силовом поле, например в поле силы тяжести. Применим к этому течению закон сохранения энергии. Выделим в жидкости бесконечно узкую трубку тока и рассмотрим часть жидкости, занимающую объем MNDC. Пусть эта часть переместилась в бесконечно близкое положение (рис. 6.2). При малом перемещении можно пренебречь различием площадей сечений MN и , CD и . Вычислим работу А, совершаемую при этом силами давления. Силы давления, действующие на боковую поверхность трубки тока перпендикулярно к перемещению, работы не совершают. При перемещении границы MN в положение силами давления совершается работа , где – величина перемещения. Эту работу можно представить в виде или , где – масса жидкости в объеме , . При перемещении границы CD в положение жидкость совершает работу против сил давления . Рассуждая аналогично, найдем , где – масса жидкости в объеме . Если движение стационарно, то масса жидкости в объеме не изменится, а потому из закона сохранения массы получим . Тогда для работы, совершаемой внешним давлением, получим: . Эта работа должна быть равна приращению полной энергии выделенной части жидкости. Ввиду стационарности течения энергия жидкости в объеме не изменилась. Поэтому приращение полной энергии равно разности энергий массы жидкости в объемах и . Обозначим через энергию, приходящуюся на единицу массы жидкости, тогда . Приравнивая эту величину к работе А и сокращая на , получаем: . Отсюда следует, что вдоль одной и той же линии тока при стационарном течении идеальной жидкости величина остается постоянной: . Это соотношение называется уравнением Бернулли. Оно было впервые опубликовано в 1738 году. Даниил Бернулли (Daniel Bernoulli), 1700–1782 Даниил Бернулли – один из наиболее выдающихся физиков и математиков своего времени. С 1725 г. по 1733 г. работал в Петербурге. Руководил работой кафедры чистой математики. Член Берлинской, Парижской, Петербургской и других академий наук, член Лондонского Королевского общества. Даниил Бернулли является одним из представителей настоящей потомственной династии научных гениев родом из Швейцарии. Отец Даниила – Иоганн Бернулли – был видным профессором математики в университете г. Гронинген. Книга Даниила «Гидродинамика» (Hydrodynamica) была опубликована в 1738 г., практически одновременно с книгой Иоганна Бернулли «Гидравлика» (Hydraulica).
Энергия складывается из кинетической энергии единицы массы жидкости и ее потенциальной энергии gh в поле тяжести. В этом случае уравнение Бернулли принимает вид: Пусть жидкость течет по горизонтальной трубе. Тогда уравнение Бернулли примет вид:
Из выражения (6.2) следует, что в областях трубки с большей скоростью течения жидкости давление меньше. Согласно уравнению неразрывности струи (6.1) скорость течения жидкости больше в местах с меньшим сечением трубы, следовательно, давление по мере перехода к более узким ее участкам уменьшается. Образующийся при этом перепад давлений заставляет жидкость двигаться вдоль трубы с ускорением. Пример
ФОРМУЛА ТОРРИЧЕЛЛИ
Применим уравнение Бернулли к истечению жидкости из небольшого отверстия в широком сосуде. Выделим трубку тока (рис. 6.3). В каждом сечении скорость и высоту над некоторым исходным уровнем можно считать постоянной. Давление в обоих сечениях равно атмосферному. Скорость перемещения открытой поверхности много меньше скорости истечения жидкости из отверстия , поэтому можно положить ее равной нулю. Тогда . Отсюда , где . Эта формула называется формулой Торричелли и определяет скорость истечения жидкости из отверстия. Она получена для идеальной жидкости. Из формулы Торричелли следует, что скорость истечения жидкости из отверстия одинакова для всех жидкостей и зависит лишь от высоты, с которой жидкость опустилась. Она оказывается равной скорости свободного падения тела с той же высоты. Для реальных жидкостей скорость будет меньше, она зависит от формы, размера отверстия и от вязкости жидкости
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2315)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |