Процесс переноса массы
ПРОЦЕССЫ ПЕРЕНОСА ОБЩИЕ СВЕДЕНИЯ
Когда макросистема находится в равновесии, все ее тер-модинамические параметры постоянны по всему объему сис-темы. Если систему вывести из равновесия и предоставить самой себе, то она постепенно вернется в равновесное сос-тояние. При этом в системе будут протекать необратимые процессы, называемые процессами переноса. Различают нес-колько процессов переноса в зависимости от того, какие па-раметры системы были выведены из равновесия. Это – процессы переноса энергии, плотности и импульса, и свя-занные с ними явления теплопроводности, диффузии и вяз-кости. Процессы переноса возникают, когда имеется гради-ент какого-либо параметра макросистемы по всему объему макросистемы. При этом возникают потоки параметра в сто-рону уменьшения параметра. Установление равновесия термодинамических систем происходит при помощи движения молекул. Это позволяет получить общее уравнение для всех явлений переноса. Пусть имеется термодинамическая система с концен-трацией молекул, равной
Этот поток и будет переносить физическую величину Пусть величина
Тогда общее уравнение переноса для любой величины
где
Значения этих величин берутся в сечении
Процесс переноса массы
Процесс переноса массы обусловливает явление диффу-зии. Диффузия – это самопроизвольное выравнивание кон-центраций в смеси нескольких различных веществ. Такое выравнивание концентраций происходит из-за теплового хаотического движения молекул. Рассмотрим смесь двух га-зов при постоянной температуре и давлении во всем объеме сосуда. При этих условиях не будет газодинамических по-токов, взаимопроникновение молекул будет обусловлено только тепловым движением. Суммарная концентрация
Переносимой величиной
Получаем выражения для потока этой величины:
В случае, когда смесь состоит из большего количества компонент, поток
где
– коэффициент диффузии. Мы получили выражение для потока через единичную площадку. При определении потока через площадку
Из этого соотношения можем получить выражение для потока массы
где Два последних выражения (2.7) и (2.8) были получены эмпирическим путем и носят название закона Фика. Размерность коэффициента диффузии –
Популярное: Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... ![]() ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1513)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |