Мегаобучалка Главная | О нас | Обратная связь

Процесс переноса массы




ПРОЦЕССЫ ПЕРЕНОСА

ОБЩИЕ СВЕДЕНИЯ

 

Когда макросистема находится в равновесии, все ее тер-модинамические параметры постоянны по всему объему сис-темы. Если систему вывести из равновесия и предоставить самой себе, то она постепенно вернется в равновесное сос-тояние. При этом в системе будут протекать необратимые процессы, называемые процессами переноса. Различают нес-колько процессов переноса в зависимости от того, какие па-раметры системы были выведены из равновесия. Это – процессы переноса энергии, плотности и импульса, и свя-занные с ними явления теплопроводности, диффузии и вяз-кости. Процессы переноса возникают, когда имеется гради-ент какого-либо параметра макросистемы по всему объему макросистемы. При этом возникают потоки параметра в сто-рону уменьшения параметра.

Установление равновесия термодинамических систем происходит при помощи движения молекул. Это позволяет получить общее уравнение для всех явлений переноса.

Пусть имеется термодинамическая система с концен-трацией молекул, равной . Средняя скорость молекул . Движение молекул в такой системе будем считать полнос-тью хаотическим для того, чтобы не было направленных то-ков молекул и процессы переноса обусловливались только движением молекул. Возьмем некую площадку единич-ной площади. Определим плотность потока молекул, пере-секающих площадку в одном направлении. Пусть пло-щадка располагается перпендикулярно оси . Плотность потока молекул, пересекающих площадку в положитель-ном направлении оси будет

 

. (2.1)

 

Этот поток и будет переносить физическую величину , выведенную из равновесия, в сторону уменьшения ее значе-ния. Плотность потока величины обозначим как . Предположим, что величина характеризует какое-то мо-лекулярное свойство одной молекулы, причем молекула об-ладала этим свойством на расстоянии свободного пробега от площадки . То есть последнее со-ударение молекула испытывала на расстоянии от площадки .

Пусть величина изменяется вдоль оси , т.е. имеет место градиент . Тогда возникает поток величины в сторону ее уменьшения (рис.2.1).



 

 
 

Тогда общее уравнение переноса для любой величины через площадку единичной площади, перпендикулярную на-правлению переноса, будет следующим:

 

, (2.2)

 

где – концентрация молекул,

– средняя скорость молекул,

– расстояние свободного пробега.

Значения этих величин берутся в сечении . Теперь на основе общего уравнения переноса получим уравнения для переноса массы, импульса и энергии.

 

 

Процесс переноса массы

 

Процесс переноса массы обусловливает явление диффу-зии. Диффузия – это самопроизвольное выравнивание кон-центраций в смеси нескольких различных веществ. Такое выравнивание концентраций происходит из-за теплового хаотического движения молекул. Рассмотрим смесь двух га-зов при постоянной температуре и давлении во всем объеме сосуда. При этих условиях не будет газодинамических по-токов, взаимопроникновение молекул будет обусловлено только тепловым движением. Суммарная концентрация обеих компонент не изменяется в зависимости от коорди-наты по оси . От координаты зависят концентрации обеих смесей ( и ). То есть возникает градиент концен-трации одной из компонент, что служит причиной возник-новения процесса переноса массы каждой компоненты в на-правлении уменьшения ее концентрации (рис. 2.2).

 
 

 

Переносимой величиной будет являться концентрация молекул одной из компонент:

(2.3)

 

Получаем выражения для потока этой величины:

 

(2.4)

 

В случае, когда смесь состоит из большего количества компонент, поток -й компоненты будет выражаться тем же соотношением:

, (2.5)

 

где

(2.6)

 

– коэффициент диффузии.

Мы получили выражение для потока через единичную площадку. При определении потока через площадку , по-лучаем соотношение, описывающее поток молекул -й ком-поненты:

. (2.7)

 

Из этого соотношения можем получить выражение для потока массы -й компоненты. Для этого умножим обе части уравнения на массу молекулы -й компоненты:

 

, (2.8)

 

где парциальная плотность -й компоненты.

Два последних выражения (2.7) и (2.8) были получены эмпирическим путем и носят название закона Фика.

Размерность коэффициента диффузии – . Коэффициент диффузии определяет массу, переносимую через поверх-ность площадью за 1 секунду при градиенте плот-ности, равном . Коэффициент диффузии приближенно обратно пропорционален давлению, а при постоянном дав-лении пропорционален .

 

 





Читайте также:





Читайте также:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...

©2015 megaobuchalka.ru Все права защищены авторами материалов.

Почему 3458 студентов выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)