Получение единой оценки состояния защищаемой системы
Общая оценка аномальности должна определяется из расчета множества параметров оценки. Если это множество формируется так, как было предложено в предыдущем параграфе, то получение единой оценки представляется весьма не простой задачей. Один из возможных методов – использование статистики Байеса. Другой способ, применяемый в NIDES, основан на использовании ковариантных матриц [5]. Статистика Байеса Пусть А1.. Аn –nизмерений, используемых для определения факта вторжения в любой момент времени. Каждое Аi оценивает различный аспект системы, например – количество активностей ввода-вывода, количество нарушений памяти и т.д. Пусть каждое измерение Аi имеет два значения 1 – измерение аномальное, 0 – нет. Пусть I – это гипотеза того, что в системе имеются процессы вторжения. Достоверность и чувствительность каждого измерения определяется показателями (1) Вероятность вычисляется при помощи теоремы Байеса. (2) Для событий I и I,скорее всего, потребуется вычислить условную вероятность для каждой возможной комбинации множества измерений. Количество требуемых условных вероятностей экспоненциально по отношению к количеству измерений. Для упрощения вычислений, но теряя в точности, мы можем предположить, что каждое измерение Аi зависит только от I и условно не зависит от других измерений Аjгде i ≠ j. Это приведет к соотношениям (3) и (4) Отсюда (5) Теперь мы можем определить вероятность вторжения, используя значения измерений аномалий, вероятность вторжения, полученную ранее, и вероятности появления каждого из измерений аномальности, которые наблюдали ранее во время вторжений. Однако для получения более реалистичной оценки Р(I|А1..Аn), необходимо учитывать влияние измеренийАiдруг на друга. Ковариантные матрицы В NIDES, чтобы учитывать связи между измерениями, при расчете используются ковариантные матрицы. Если измерения А1.. Аn представляет собой вектор А, то составное измерение аномалии можно определить как (6) где С – ковариантная матрица, представляющая зависимость между каждой парой измерений аномалий. Сети доверия (сети Байеса) Байесовы сети представляют собой графовые модели вероятностных и причинно-следственных связей между переменными в статистическом информационном моделировании. В байесовых сетях органически сочетаются эмпирические частоты появления различных значений переменных, субъективные оценки «ожиданий» и теоретические представления о математических вероятностях тех или иных следствий из априорной информации [6].
Популярное: Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (873)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |