Мегаобучалка Главная | О нас | Обратная связь


История исследования плазмид




СОДЕРЖАНИЕ

Введение…………………………………………………………………….................. 3

1 История исследования плазмид……………………………………………………. 6

2 Классификация плазмид……………………………………………………………. 8

2.1 Распространение плазмид………………………………………………………….8

3 Несовместимость и группы несовместимости…………………………..................10

4 Молекулярная и генетическая организация плазмид……………………..............13

5 Генетическая организация факторы переноса……………………………..............15

6 Общая характеристика и механизмы действия………………………....................16

7 Плазмиды бактериоциногении……………………………………………..............19

7.1 Плазмиды и патогенность бактерий……………………………………...............19

Заключение…………………………………………………………………................20

Список использованных источников………………………………..……................21

ВВЕДЕНИЕ

 

Плазмиды – внехромосомные генетические элементы, способные к автономному поддержанию в цитоплазме бактерий или существованию в нтегрированном в хромосому состоянии, откуда они могут свободно выходить в цитоплазму (иногда с фрагментами хромосомы). Некоторые хромосомы могут распространяться в бактериальной популяции между ее членами. Плазмиды определяют ряд важных свойств бактерий:

-являются факторами фертильности – определяют донорский фенотип клетки;

-контролируют резистентность к антибиотикам, сульфаниламидам, катионам тяжелых металлов, бактериоцинам, бактериофагам, к сыворотке крови;

-чувствительность к бактериоцинам;

-синтез тиамина, пролина, внеклеточной ДНКазы и др.;

-синтез антибиотиков и бактериоцинов;

-метаболизм углеводов, углеводсодержащих соединений, галогеновых соединений, белков;

-фиксацию азота;

-продукцию токсинов, гемолизина, антигенов колонизации, капсулы;

-в последнее время природа факторов внехромосомной наследственности.

Микроорганизмы приобрели особый интерес в связи с появлением данных о возможности использования плазмид в качестве векторов эукариотных генов. Такая возможность открывает неограниченные перспективы для генетического моделирования не только при решении проблем молекулярной биологии, но и в практическом аспекте, в частности в медицинской микробиологии и иммунологии (создание новых бактерийных профилактических и лечебных препаратов) и микробиологической промышленности.



Большой опыт экспериментального мутагенеза на модели бактерий и вирусов способствовал раскрытию генетических и молекулярных механизмов регуляции функций внехромосомных элементов. Их способность включаться в хромосому и формировать комплексы «замещенных» плазмид широко используется в экспериментальной биологии и генетике.

Замещенные плазмиды несут фрагменты хромосомы бактерии-хозяина и в автономном состоянии функционируют под контролем регуляторных механизмов бактериальной клетки. Расширение методических и технических возможностей экспериментальных исследований в области молекулярной биологии позволяет целенаправленно использовать генетические модели в решении важных практических задач.

Определились реальные пути более гибкого вмешательства в процессы физиологически нормального генетического обмена у бактерий, осуществляемого с участием внехромосомных элементов, способствующих конъюгации, формированию рекомбинантов, передаче генетического материала путем трансдукции умеренными фагами, мобилизации нетрансмиссивных элементов плазмидами, имеющими в своей структуре «гены трансмиссивности», и сочетания с этими генами фрагментов хромосомы с последующим переносом вновь формирующихся структур и их ассоциаций в клетки реципиентов. Актуальное значение приобретает исследование механизмов взаимодействия внехромосомных элементов с хромосомой и между собой в естественных или сконструированных искусственно полиплазмидных системах. Подчинение этих систем общим регуляторным механизмам на уровне клетки и популяции микроорганизмов выдвигает новые проблемы: изучение специфических особенностей полиплазмидных популяций при наличии дополнительных генетических факторов, не обязательных для воспроизведения жизнеспособного потомства, и возможностей практического использования искусственно обогащенного генома популяций бактерий.

В последнее десятилетие интенсивно накапливаются данные о генетической природе и биологических особенностях плазмид, с которыми непосредственно связана патологическая активность бактерий. Это – элементы Hly, Ent, Vir, сведения о которых в мало обобщены. Практическое значение в инфекционной патологии приобретают «вторичные» процессы при ожоговых заболеваниях и постхирургических осложнениях, возникающих в связи с неограниченно возрастающей множественностнной лекарственной устойчивостью возбудителей этих процессов, контролируемой трансмиссивными и нетрансмиссивными факторами инфекционной резистентности. Менее полно изучены, но не менее важны плазмиды, контролирующие патогенные свойства стафилококков, стрептококков, псевдомонад.

В настоящее время на основе использования трансмиссивных эписом интенсивно разрабатывается новое направление исследований «генетическая инженерия» и как специальный раздел этого направления — «генная инженерия». Последняя представляет собой область прикладной молекулярной генетики и биологии, развитие которой только начинается. Однако первоисточником «сырья» для осуществления конкретных задач конструирования новых биологически активных молекул являются внехромосомные элементы, способные функционировать в виде самостоятельных оперонов и репликонов. Они сохраняют эту функцию в гетерологичных системах микроорганизмов и, что особенно привлекает «биоинженеров», — в системах эукариотов.

История исследования плазмид

Начало исследования плазмид относят к 20 гг. XX века. В 1921 г. Bourdet и Ciuca открыли лизогенные бактерии, способные спонтанно лизироваться. В 1925 г. Gratia обнаружил фактор, подавлявший рост некоторых видов энтеробактерий – «принцип V». Wollman в 1928 г. высказал предположение о трансмиссивности факторов лизогенности. В 1932 г. Gratia идентифицировал обнаруженный им фактор, обладавший антагонистической активностью как белковоподобное вещество. Это исследование дало начало изучению колициногенности –способности бактерий E. Coli продуцировать колицины – вещества, подавляющие рост близкородственных бактерий.

В 1946 г. Д. Ледерберг и Э. Татум использовали смешанное культивирование ауксотрофных мутантов E. Coli K12 и открыли конъюгацию бактерий. В дальнейшем было доказано, что при конъюгации часть клеток являются донорами, а часть реципиентами, что зависит от присутствия внехромосомного фактора фертильности: F-фактора, откуда следовал вывод об односторонности механизма и наличия F+ и F — фенотипов. Дальнейшие исследования показали возможность превращения клеток F — в F+ в смесях клеток обоих типов, что указывало на трансмиссивность F-фактора. Было также доказано существование внехромосомных элементов – «плазмид». Как оказалось позднее, плазмида (фактор) F является чистым фактором генетического переноса, так как обладает лишь генами переноса и генами репликации. Внехромосомная природа фактора F была доказана на основании результатов обработки бактерий F+ акридиновыми красителями, что приводит к «удалению» фактора F из клеток популяции и превращает их из доноров в реципиентов. Работы 50-х годов показали, что плазмида F может находиться как автономном состоянии (в цитоплазме), так и в интегрированном в хромосому.

В 1952 г. Lwoff систематизировал материалы по лизогении и впервые предложил термин «плазмиды» для обозначения «внехромосомных симбиотических организмов». В настоящее время этот термин рекомендуется в качестве основного для определения внехромосомных наследственности у бактерий.

Открытие во второй половине 50-х годов японскими исследователями генетических элементов, контролирующих множественную трансмиссивную устойчивость бактерий к наиболее широко применявшимся антибиотикам и синтетическим химиотерапевтическим препаратам сульфаниламидного ряда, ознаменовало новый этап в изучении внехромосомных факторов наследственности бактерий. Она передавалась в результате клеточных контактов, независимо от переноса бактериальной хромосомы. Для обозначения детерминантов резистентности Mitsuhashi S. предложил символ R. Многочисленные исследования в 60 -70-е гг. показали, что R-плазмиды присутствуют в бактериях многих видов, широко распространены географически, отличаются друг от друга и по генетическому составу и по фенотипическим проявлениям.

В середине 60-х годов английские исследователи Datta, 1965; Anderson, 1965; Datta, Meynell, 1965 г. представили данные о природе фактора трансмиссивности—RTF, и его аналога—фактора А, способных существовать в свободном состоянии и формировать комплексы с детерминантами резистентности к отдельным антибиотикам, не обладающим собственными генами трансмиссивности. Эти исследователи установили функциональную гомологию фактора передачи резистентности к антибиотикам, а также показали филогенетические связи плазмид резистентности с другими трансмиссивными плазмидами.

В 70-е гг. появляются сведения о детерминированной резистентности к тяжелым металлам, о контроле плазмидами метаболизма липополисахаридов и других компонентов клеточной стенки бактерий, синтеза токсинов, бактериоцинов, синтеза различных ферментов. В 80-е гг. были открыты полиплазмидные системы переноса плазмид.

В России исследования плазмид были начаты в конце 50-х гг. в лабораториях Д. Г. Кудлай и А. П. Пехова.

Классификация плазмид

В 50-е гг. плазмиды R стали классифицировать на fi+ и fi- (по способности ингибировать перенос плазмиды F). Далее стали, в зависимости от различия в пилях, выделять F и I-подобные плазмиды. Современные подходы к классификации плазмид основаны на комплексном учете их генетических свойств.

Еще в ранних работах по изучению плазмид было замечено, что существуют факторы, препятствующие конъюгационному переносу плазмид от доноров к реципиентам, содержащим одинаковые и сходные плазмиды. Один из таких факторов – поверхностное исключение: в скрещиваниях плазмида не переходит из клеток доноров в клетки реципиенты, содержащие сходную плазмиду. В результате поверхностного исключения перенос снижается в 10-400 раз по сравнению с нормой. Следующий фактор был открыт в 60-е гг. – летальный зигозиз. Смешивание клеток доноров с клетками реципиентами, добавленными в смесь в значительно меньшем количестве, чем клетки доноры, сопровождается снижением числа жизнеспособных зигот, наследующих донорский генетический материал. Наконец результативность переноса зависит от несовместимости плазмид. В наиболее простом виде несовместимость заключается в том, что при переносе одна из плазмид элиминируется. Если в клетке обе плазмиды сохраняются, то это указывает на их совместимость. Обычно несовместимы те плазмиды, контроль репликации которых одинаково.

 





Читайте также:


Рекомендуемые страницы:


Читайте также:
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (775)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)