Мегаобучалка Главная | О нас | Обратная связь


СТРУКТУРА СИСТЕМНОГО АНАЛИЗА



2016-01-26 556 Обсуждений (0)
СТРУКТУРА СИСТЕМНОГО АНАЛИЗА 0.00 из 5.00 0 оценок




 

Общий подход к решению проблем может быть представлен как цикл. При этом в процессе функционирования реальной системы выявляется проблема практики как несоответствие существующего положения дел. Для решения проблемы проводится системное исследование (декомпозиция, анализ и синтез) системы, снимающее проблему. В ходе синтеза осуществляется оценка анализируемой и синтезируемой систем. Реализация синтезированной системы в виде предлагаемой физической системы позволяет провести оценку степени снятия проблемы практики и принять решение на функционирование модернизированной (новой) реальной системы.

При таком представлении становится очевидным еще один аспект определения системы: система есть средство решения проблем.

Основные задачи системного анализа могут быть представлены в виде трехуровневого дерева функций (рис. 1).

На этапе декомпозиции, обеспечивающем общее представление системы, осуществляются:

1.Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в пространстве состояний системы или в области допустимых ситуаций. Наиболее часто декомпозиция проводится путем построения дерева целей и дерева функций.

2.Вьщеление системы из среды (разделение на систему/«не систему») по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части надсистемы.

3.Описание воздействующих факторов.

4.Описание тенденций развития, неопределенностей разного рода.

Рис.1. Дерево функций системного анализа

 

5.Описание системы как «черного ящика».

6.Функциональная (по функциям), компонентная (по виду элементов) и структурная (по виду отношений между элементами) декомпозиции системы.

Глубина декомпозиции ограничивается. Декомпозиция должна прекращаться, если необходимо изменить уровень абстракции - представить элемент как подсистему. Если при декомпозиции выясняется, что модель начинает описывать внутренний алгоритм функционирования элемента вместо закона его функционирования в виде «черного ящика», то в этом случае произошло изменение уровня абстракции. Это означает выход за пределы цели исследования системы и, следовательно, вызывает прекращение декомпозиции.

В автоматизированных методиках типичной является декомпозиция модели на глубину 5-6уровней. На такую глубину декомпозируется обычно одна из подсистем. Функции, которые требуют такого уровня детализации, часто очень важны, и их детальное описание дает ключ к секретам работы всей системы.

В общей теории систем доказано, что большинство систем могут быть декомпозированы на базовые представления подсистем. К ним относят: последовательное (каскадное) соединение элементов, параллельное соединение элементов, соединение с помощью обратной связи.

Проблема проведения декомпозиции состоит в том, что в сложных системах отсутствует однозначное соответствие между законом функционирования подсистем и алгоритмом, его реализующим. Поэтому осуществляется формирование нескольких вариантов (или одного варианта, если система отображена в виде иерархической структуры) декомпозиции системы.

На этапе анализа, обеспечивающем формирование детального представления системы, осуществляются:

1. Функционально-структурный анализ существующей системы, позволяющий сформулировать требования к создаваемой системе. Он включает уточнение состава и законов функционирования элементов, алгоритмов функционирования и взаимовлияний подсистем, разделение управляемых и неуправляемых характеристик, задание пространства состояний Z, задание параметрического пространства Т, в котором задано поведение системы, анализ целостности системы, формулирование требований к создаваемой системе.

2.Морфологический анализ - анализ взаимосвязи компонентов.

3.Генетический анализ - анализ предыстории, причин развития ситуации, имеющихся тенденций, построение прогнозов.

4.Анализ аналогов.

5.Анализ эффективности (по результативности, ресурсоемкости, оперативности). Он включает выбор шкалы измерения, формирование показателей эффективности, обоснование и формирование критериев эффективности, непосредственно оценивание и анализ полученных оценок.

6.Формирование требований к создаваемой системе, включая выбор критериев оценки и ограничений.

 

2.2.1. Формирование общего представления системы

 

С т а д и я 1. Выявление главных функций (свойств, целей, предназначения) системы. Формирование (выбор) основных предметных понятий, используемых в системе. На этой стадии речь идет об уяснении основных выходов в системе. Именно с этого лучше всего начинать ее исследование. Должен быть определен тип выхода: материальный, энергетический, информационный, они должны быть отнесены к каким-либо физическим или другим понятиям (выход производства - продукция (какая?), выход системы управления – командная информация (для чего? в каком виде?), выход автоматизированной информационной системы - сведения (о чем?) и т.д.).

Стадия 2. Выявление основных функций и частей (модулей) в системе. Понимание единства этих частей в рамках системы. На этой стадии происходит первое знакомство с внутренним содержанием системы, выявляется, из каких крупных частей она состоит и какую роль каждая часть играет в системе. Это стадия получения первичных сведений о структуре и характере основных связей. Такие сведения следует представлять и изучать при помощи структурных или объектно-ориентированных методов анализа систем, где, например, выясняется наличие преимущественно последовательного или параллельного характера соединения частей, взаимной или преимущественно односторонней направленности воздействий между частями и т.п. Уже на этой стадии следует обратить внимание на так называемые системообразующие факторы, т.е. на те связи, взаимообусловленности, которые и делают систему системой.

Стадия 3. Выявление основных процессов в системе, их роли, условий осуществления; выявление стадийности, скачков, смен состояний в функционировании; в системах с управлением - выделение основных управляющих факторов. Здесь исследуется динамика важнейших изменений в системе, ход событий, вводятся параметры состояния, рассматриваются факторы, влияющие на эти параметры, обеспечивающие течение процессов, а также условия начала и конца процессов. Определяется, управляемы ли процессы и способствуют ли они осуществлению системой своих главных функций. Для управляемых систем уясняются основные управляющие воздействия, их тип, источник и степень влияния на систему.

Стадия 4. Выявление основных элементов «не системы», с которыми связана изучаемая система. Выявление характера этих связей. На этой стадии решается ряд отдельных проблем. Исследуются основные внешние воздействия на систему (входы). Определяются их тип (вещественные, энергетические, информационные), степень влияния на систему, основные характеристики. Фиксируются границы того, что считается системой, определяются элементы «не системы», на которые направлены основные выходные воздействия. Здесь же полезно проследить эволюцию системы, путь ее формирования. Нередко именно это ведет к пониманию структуры и особенностей функционирования системы.

В целом данная стадия позволяет лучше уяснить главные функции системы, ее зависимость и уязвимость или относительную независимость во внешней среде.

Стадия 5. Выявление неопределенностей и случайностей в ситуации их определяющего влияния на систему (для стохастических систем).

Стадия 6. Выявление разветвленной структуры, иерархии, формирование представлений о системе как о совокупности модулей, связанных входами-выходами.

Стадией 6 заканчивается формирование общих представлений о системе. Как правило, этого достаточно, если речь идет об объекте, с которым мы непосредственно работать не будем. Если же речь идет о системе, которой надо заниматься для ее глубокого изучения, улучшения, управления, то нам придется пойти дальше по спиралеобразному пути углубленного исследования системы.

2.2.2.Формирование детального представления системы

 

Стадия 7. Выявление всех элементов и связей, важных для целей рассмотрения. Их отнесение к структуре иерархии в системе. Ранжирование элементов и связей по их значимости.

Стадии 6 и 7 тесно связаны друг с другом, поэтому их обсуждение полезно провести вместе. Стадия 6 - это предел познания «внутрь» достаточно сложной системы для лица, оперирующего ею целиком. Более углубленные знания о системе (стадия 7) будет иметь уже только специалист, отвечающий за ее отдельные части. Для не слишком сложного объекта уровень стадии 7 - знание системы целиком - достижим и для одного человека. Таким образом, хотя суть стадий 6 и 7 одна и та же, но в первой из них мы ограничиваемся тем разумным объемом сведений, который доступен одному исследователю.

При углубленной детализации важно выделять именно существенные для рассмотрения элементы (модули) и связи, отбрасывая все то, что не представляет интереса для целей исследования. Познание системы предполагает не всегда только отделение существенного от несущественного, но также отделение дополнительного внимания более существенному. Детализация должна затронуть и уже рассмотренную в стадии 4 связь системы с «не системой». На стадии 7 совокупность внешних связей считается проясненной настолько, что можно говорить о доскональном знании системы.

Стадии 6 и 7 подводят итог общему, цельному изучению системы. Дальнейшие стадии уже рассматривают только ее отдельные стороны. Поэтому важно еще раз обратить внимание на системообразующие факторы, на роль каждого элемента и каждой связи, на понимание, почему они именно таковы или должны быть именно таковыми в аспекте единства системы.

Стадия 8 . Учет изменений и неопределенностей в системе. Здесь исследуются медленное, обычно нежелательное изменение свойств системы, которое принято называть «старением», а также возможность замены отдельных частей (модулей) на новые, позволяющие не только противостоять старению, но и повысить качество системы по сравнению с первоначальным состоянием. Такое совершенствование искусственной системы принято называть развитием. К нему также относят улучшение характеристик модулей, подключение новых модулей, накопление информации для лучшего ее использования, а иногда и пере­ стройку структуры, иерархии связей.

Основные неопределенности в стохастической системе считаются исследованными на стадии 5. Однако недетерминированность всегда присутствует и в системе, не предназначенной работать в условиях случайного характера входов и связей. Добавим, что учет неопределенностей в этом случае обычно превращается в исследование чувствительности важнейших свойств (выходов) системы. Под чувствительностью понимают степень влияния изменения входов на изменение выходов.

Стадия 9. Исследование функций и процессов в системе в целях управления ими. Введение управления и процедур принятия решения. Управляющие воздействия как системы управления. Для целенаправленных и других систем с управлением данная стадия имеет большое значение. Основные управляющие факторы были уяснены при рассмотрении стадии 3, но там это носило характер общей информации о системе. Для эффективного введения управлений или изучения их воздействий на функции системы и процессы в ней необходимо глубокое знание системы. Именно поэтому мы говорим об анализе управлений только сейчас, после всестороннего рассмотрения системы. Напомним, что управление может быть чрезвычайно разнообразным по содержанию - от команд специализированной управляющей ЭВМ до министерских приказов.

Однако возможность единообразного рассмотрения всех целенаправленных вмешательств в поведение системы позволяет говорить уже не об отдельных управленческих актах, а о системе управления, которая тесно переплетается с основной системой, но четко выделяется в функциональном отношении.

Выводы

Системный анализ представляется в виде некоторого множества более конкретных его разновидностей. Это множество «простых» системных подходов можно представить в виде матрицы, в каждой ячейке которой находится один из частных методов.

Матрица системного анализа дает представление обо всех возможных разновидностях системного анализа. Она выступает классификатором, своеобразным путеводителем по системному анализу. Одновременно она служит в качестве методологического прогноза относительно перспектив развития системного анализа. Реальное состояние системной аналитики ныне таково, что развито небольшое число конкретных методов системного анализа. Матрица практически пустая. Ее заполнение – очень важная и одновременно сложная задача науки, которая должна не только отработать технологии методов, но и применять их к решению задач системного анализа.

Системный анализ – это сложная наука, которая находится в процессе становления, обретения своей системы, представленной матрицей системного анализа.

 

 

Список литературы

 

1. Сурмин Ю.П. Теория систем и системный анализ: Учебное пособие. – К. : МАУП, 2003.

2. Анфилатов В.С. и др. Системный анализ в управлении: Учеб. пособие. - М. : Финансы и статистика, 2003.

 



2016-01-26 556 Обсуждений (0)
СТРУКТУРА СИСТЕМНОГО АНАЛИЗА 0.00 из 5.00 0 оценок









Обсуждение в статье: СТРУКТУРА СИСТЕМНОГО АНАЛИЗА

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (556)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)