Структурные схемы ТЭЦ и КЭС
1. На рис. 7.11 представлены структурные схемы ТЭЦ. Если мощность местной нагрузки Рм.н относительно велика и составляет не менее 30—50 % суммарной мощности установленных генераторов, то целесообразно сооружение РУ генераторного напряжения (ГРУ 6—10 кВ), к которому подключаются генераторы и кабельные линии местной нагрузки (рис. 7.11, а). При наличии местной нагрузки не только на генераторном напряжении, но и на напряжениях 35 и 110 кВ структурная схема выполняется по вариантам, приведенным на рис. 7.11, б, в. Если мощность местной нагрузки относительно невелика и составляет менее 30 % суммарной мощности установленных генераторов, то структурную схему ТЭЦ можно строить по блочному принципу (рис. 7.11, г). В этом случае местная нагрузка и с.н. ТЭЦ питаются от понижающих трансформаторов или реакторов, подключение которых к генераторам осуществляется с помощью ответвления от главного токопровода, соединяющего генератор и блочный трансформатор. Для повышения надежности электроснабжения местной нагрузки точка подключения ответвления располагается за генераторным выключателем, тогда в случае отключения генератора по какой-либо причине ее питание будет осуществляться от блочного трансформатора.
Рис. 3. Структурные схемы КЭС
2. Что такое комплексная схема замещения и какой вид она имеет при различных несимметричных замыканиях? Комплексная схема замещения электроустановки (Комплексная схема замещения) – электрическая схема, в которой схемы замещения прямой, обратной и нулевой последовательностей: или других составляющих объединены соответствующим образом с учетом соотношений между составляющими токов и напряжения в месте повреждения. 3.3.1. В тех случаях, когда требуется определить токи и напряжения не только в месте несимметричного КЗ, но и в других ветвях и точках расчетной схемы, целесообразно использовать комплексные схемы замещения. Исходные комплексные схемы замещения для расчета двухфазного КЗ и двухфазного КЗ на землю получаются путем соединения соответственно начал и концов исходных схем замещения различных последовательностей, как показано на рис. 3.3 и 3.4. Рис. 3.3. Комплексная схема замещения для двухфазного КЗ
Рис. 3.4. Комплексная схема замещения для двухфазного КЗ на землю
Комплексную схему замещения для однофазного КЗ, в которой выполняются все соотношения не только для симметричных составляющих тока особой фазы, но и для симметричных составляющих напряжения, можно получить, если схемы замещения отдельных последовательностей соединить между собой с помощью идеальных промежуточных трансформаторов (т.е. трансформаторов, у которых потери мощности и ток намагничивания равны нулю) с коэффициентом трансформации 1 : 1. Такая комплексная схема замещения приведена на рис. 3.5, а. При аналитических расчетах допускается использовать упрощенную комплексную схему замещения без промежуточных трансформаторов, которая справедлива только для симметричных составляющих тока особой фазы. Рис. 3.5. Комплексные схемы замещения для однофазного КЗ:
а) - точная; б) – приближенная
3. Изоляция на основе слюды Композиционная изоляция (на основе слюды) в современных генераторах электрической энергии. Конструктивные особенности изоляции обмоток высокого напряжения турбогенераторов и гидрогенераторов Изоляция на основе слюды имеет класс нагревостойкости В (до 130°С). Слюда имеет очень высокую электрическую прочность (при определенной ориентации электрического поля относительно кристаллической структуры), обладает стойкостью к воздействию частичных разрядов и высокой нагревостойкостью. Благодаря этим свойствам, слюда является незаменимым материалом для изоляции статорных обмоток крупных вращающихся машин. Основными исходными материалами служат микалента или стеклослюдинитовая лента. Микалента представляет собой слой пластинок слюды, скрепленных лаком между собой и с подложкой из специальной бумаги или стеклоленты. Микалента используется в так называемой компаундированной изоляции, процесс изготовления которой включает намотку нескольких слоев микаленты, пропитку их при нагреве под вакуумом битумным компаундом и опрессовку. Эти операции повторяются для каждых пяти-шести слоев до получения изоляции необходимой толщины. Компаундированная изоляция используется в настоящее время в машинах малой и средней мощности. Более совершенной является изоляция, выполняемая из стеклослюдинитовых лент и термореактивных пропиточных составов. Слюдинитовая лента состоит из одного слоя слюдинитовой бумаги толщиной 0,04 мм и одного или двух слоев подложки из стеклоленты толщиной 0,04 мм. Такая композиция обладает достаточно высокой механической прочностью (за счет подложек) и отмеченными выше качествами, характерными для слюды. Из слюдинитовых лент и пропитывающих составов на основе эпоксидных и полиэфирных смол изготовляют термореактивную изоляцию, которая при нагреве не размягчается, сохраняет высокую механическую и электрическую прочность. Разновидности термореактивной изоляции, используемые у нас в стране, называют “слюдотерм”, “монолит”, “монотерм” и т.д. Термореактивная изоляция применяется в статорных обмотках крупных турбо- и гидрогенераторов, двигателей и синхронных компенсаторов с номинальными напряжениями до 36 кВ. ---- Обмотки статора выполняют двухслойными, корзиночного типа. В каждый паз укладывают два стержня, принадлежащих двум разным секциям. В обмотках применяют непрерывную изоляцию прямого участка и лобовых частей стержня наложением микаленты, изготовляемой на основе асфальтового масляного лака. При изолировании стержень подвергают многократному компаундированию, заключающемуся в сушке его в вакууме при температуре 150... 160°С после наложения нескольких слоев микаленты, и последующей пропитке под давлением компаундом, состоящим почти из чистого битума. При сушке из изоляции стержней удаляют влагу, воздух и летучие составляющие лака, а при пропитке под давлением заполняют все поры, что препятствует проникновению в изоляцию влаги и воздуха.
4. Основные виды распределительных устройств (РУ) высокого напряжения, основное оборудование РУ.
Распределительное устройство (РУ) — электроустановка, служащая для приёма и распределения электрической энергии. Распределительное устройство содержит набор коммутационных аппаратов, сборные и соединительные шины, вспомогательные устройства РЗиА и средства учёта и измерения. Открытые распределительные устройства (ОРУ) — это такие распределительные устройства, которые располагаются на открытом воздухе. Обычно в виде ОРУ выполняются распределительные устройства на напряжение от 27,5 кB. Закрытые распределительные устройства (ЗРУ) — распределительные устройства, оборудование которых располагается в закрытых помещениях. Такие распределительные устройства применяют на напряжения до 10 кB. В случаях, когда РУ располагается в местности с агрессивной средой (морской воздух, повышенное запыление), допускают применение ЗРУ на напряжение вплоть до 220 кB. КРУ — такое РУ, оборудование которого располагается в полностью или частично закрытых металлических шкафах. Каждый шкаф называется ячейкой КРУ.
5. Молниеотводы, их виды. Зоны поражаемости и зоны защиты молниеотводов. Молниеотвод — устройство, устанавливаемое на зданиях и сооружениях и служащее для защиты от удара молнии. Состоит из трёх связанных между собой частей: молниеприёмник — служит для приёма разряда молнии и располагается в зоне возможного контакта с каналом молнии; в зависимости от защищаемого объекта может представлять собой металлический штырь, сеть из проводящего материала или металлический трос, натянутый над защищаемым объектом заземляющий проводник или токоотвод — проводник, служащий для отвода заряда от молниеприёмника к заземлителю; обычно представляет собой провод достаточно большого сечения заземлитель — проводник или несколько соединённых между собой проводников, находящихся в соприкосновении с грунтом; обычно представляет собой металлическую плиту, заглублённую в грунт
Виды молниеотводов: -Стержневой -Тросовый –Сетчатый -Активный Стержневые молниеприемники могут изготавливаться, как правило, из прокатной стали различного профиля. Наиболее распространенным профилем для изготовления молниеприемников являются прутки и водогазопроводные трубы. Молниеприемник должен обладать достаточной прочностью при динамических воздействиях тока молнии, его сечение принимается не менее 100 мм2 при длине не более 2 м от точки закрепления на доме или конструкции молниеотвода. При использовании стальной трубы, ее верхний конец заваривают, плотно закрывают металлической пробкой или расплющивают. Тросовые молниеприемники - это стальной трос, подвешенный над защищаемым домом, закрепленный на несущих конструкциях (опорах, мачтах). В качестве троса используют обычный стальной оцинкованный канат марки ТК сечением не менее 35 мм2. Сетчатые молниеприемники - это молниеприемники, укладываемые на кровле защищаемого дома или хозпостройки. Они выполняются из круглой стали (катанки) диаметром 6 - 8 мм. Могут так же применяться плоские стальные полосы сечением 4´20 мм. Допускается укладка молниеприемной сетки под слоем негорючей тепло- и гидро-изоляции или другой кровли. Размеры ячейки не более 12´12 м. Токоотводы выполняются через 25 м по периметру дома с присоединением к заземлителю из круглой стали диаметром 10 мм, выполненному вокруг дома.
Активный молниеприемник состоит из активной головка с электронным блоком, который в предгрозовой период за доли секунды до разряда молнии вырабатывает высокочастотные импульсы. В результате этого на молниеприемнике головки молниеотвода возникает коронный разряд, образующий встречный ионизирующий канал для разряда молнии на молниеотвод. Этот ионизированный канал увеличивает эффективную высоту молниеотвода и многократно расширяет его защитную зону Зона защиты одиночного стержневого молниеотвода: I - граница зоны защиты на уровне hx, 2 -то же на уровне земли Зона защиты двойного стержневого молниеотвода: 1 - граница зоны защиты на уровне hx1; 2 -то же на уровне hx2, 3 -то же на уровне земли Зона защиты (в плане) многократного стержневого молниеотвода. Зона защиты одиночного тросового молниеотвода.
Зона защиты двойного тросовогомолниеотвода.
БИЛЕТ 7 1/ Роль накопителей энергии в возобновляемой энергетике Для традиционных способов генерации электроэнергии накопитель энергии находится перед электрогенератором. Например, вода, запасенная в водохранилище гидроэлектростанции, обладает гравитационной энергией и может расходоваться по мере надобности для вращения турбин электрогенератора. При производстве электрической энергии с использованием так называемых альтернативных источников (например, ветер, солнце) возникает проблема непостоянства их мощности, которая отсутствует при производстве энергии традиционными способами. Поэтому необходимо энергию источника вначале запасти в накопителе энергии, а затем уже расходовать энергию накопителя, преобразуя ее, например, в электрическую энергию в необходимом количестве. При этом накопитель будет играть роль демпфирующего устройства, сглаживающего колебания мощности источника. 2. Что такое динамическая устойчивость электрической системы? Устойчивость электроэнергетической системы, способность электрической системы (ЭС) восстанавливать исходное (или практически близкое к нему) состояние (режим) после какого-либо его возмущения, проявляющегося в отклонении значений параметров режима ЭС от исходных (начальных) значений. В ЭС источниками электрической энергии обычно являются синхронные генераторы , связанные между собой электрически общей сетью, причём роторы всех генераторов вращаются синхронно; такой режим, называется нормальным, установившимся, должен быть устойчив, т. е. ЭС должна возвращаться в исходное (или практически близкое к нему) состояние всякий раз после отклонений от установившегося режима. Отклонения могут быть связаны, например, с изменением мощности нагрузки, короткими замыканиями , отключениями линий электропередачи и т.п. Устойчивость системы, как правило, уменьшается при увеличении нагрузки (мощности, отдаваемой генераторами) и понижении напряжения (росте мощности потребителей, снижении возбуждения генераторов); для каждой ЭС могут быть определены некоторые предельные (критические) значения этих или связанных с ними величин, характеризующих предел устойчивости. Надёжное функционирование ЭС возможно, если обеспечен определённый запас устойчивости ЭС, т. е. если параметры режима работы и параметры самой ЭС достаточно отличаются от критических. Для обеспечения У. э. с. предусматривают ряд мероприятий, таких, как обеспечение должного запаса устойчивости при проектировании ЭС, использование автоматического регулирования возбуждения генераторов, применение противоаварийной автоматики и т.д. Динамическая устойчивость определяет поведение ЭС после сильных возмущений, возникающих вследствие коротких замыканий, отключении линий электропередач и т. и. При анализе динамической устойчивости (система, как правило, рассматривается как нелинейная) возникает необходимость интегрировать нелинейные трансцендентные уравнения высоких порядков. Для этого применяют аналоговые вычислительные машины и т. н. расчётные модели переменного тока; наиболее часто создают специальные алгоритмы и программы, позволяющие производить расчёты на ЦВМ. Состоятельность составленных программ проверяется сопоставлением результатов расчётов с результатами экспериментов на реальной ЭС либо на физической (динамической) модели ЭС.
3/ Прямой удар молнии в объект. Вторичные проявления удара молнии. Электродинамическое воздействие тока молнии на электрооборудование электрических станций и подстанций.
Прямой удар молнии вызывает следующие воздействия на объект: • электрические, связанные с поражением людей или животных электрическим током и появлением перенапряжений на пораженных элементах. Перенапряжение пропорционально амплитуде и крутизне тока молнии, индуктивности конструкций и сопротивлению заземлителей, по которым ток молнии отводится в землю. Даже при выполнении молниезащиты прямые удары молнии с большими токами и крутизной могут привести к перенапряжениям в несколько мегавольт. При отсутствии молниезащиты пути растекания тока молнии неконтролируемы и ее удар может создать опасность поражения током, опасные напряжения шага и прикосновения, перекрытия на другие объекты; • термические, связанные с резким выделением теплоты при прямом кон-такте канала молнии с содержимым объекта и при протекании через объект тока молнии. Выделяемая в канале молнии энергия определяется переноси-мым зарядом, длительностью вспышки и амплитудой тока молнии; в 95% случаев разрядов молнии эта энергия (в расчете на сопротивление 1 Ом) превышает 5,5 Дж, она на два-три порядка превышает минимальную энергию воспламенения большинства газо-, паро- и пылевоздушных смесей, используемых в промышленности. Следовательно, в таких средах контакт с каналом молнии всегда создает опасность воспламенения (а в некоторых случаях взрыва), то же относится к случаям проплавления каналом молнии корпусов взрывоопасных наружных установок. При протекании тока молнии по тонким проводникам создается опасность их расплавления и разрыва; Вторичные проявления молнии опасны тем, что возможно искрение. Вторичное проявление молнии создает значительное электрическое напряжение в конструкциях зданий, сооружений, технологическом оборудовании. Обусловлено оно наведением высокого потенциала в производственных объектах через воздушные, подземные металлические коммуникации. При отсутствии металлической связи огромный электрический потенциал, образующийся под воздействием переменного электромагнитного поля, в последнем случае переносится с молниеотвода, например, на расположенные в непосредственной близости от него металлические конструкции через воздушный зазор. Этот электрический пробой сопровождается дуговым разрядом, представляет большую опасность для обслуживающего персонала и может послужить причиной взрывов и пожаров. Под вторичными проявлениями молнии следует понимать возникновение электрических зарядов на сооружениях в результате действия атмосферных грозовых разрядов, происходящих на некотором расстоянии от сооружения. Защиту от вторичных проявлений молний выполняют с помощью заземлений, а защиту от прямых ударов - отдельно стоящими или установленными на зданиях стержневыми или тросовыми молниеотводами. 4. Область применения и перспективы использования элегазовой изоляции. Область применения элегазовой изоляции Применение элегаза в КРУЭ К особой группе комплектных распределительных устройств относятся устройства с элегазовой изоляцией КРУЭ. Выбор элегаза (шестифтористая сера SFe) не случаен. Чистый газообразный элегаз химически не активен, безвреден, не горит и не поддерживает горения, обладает повышенной теплоотводящей способностью и удачно сочетает в себе изоляционные и дугогасящие свойства. Электрическая прочность элегаза в 2,5 раза превышает прочность воздуха. Его электрические характеристики обладают высокой стабильностью. В эксплуатации элегаз не стареет и не требует ухода, как, например, масло. Комплектуются КРУЭ из стандартных электрических элементов (выключателей, разъединителей, заземлителей, трансформаторов тока и напряжения, сборных шин), помещенных в герметизированные заземленные металлические оболочки, заполненные элегазом под давлением. Оболочки отдельных элементов соединяются между собой при помощи фланцев с уплотнениями из синтетического каучука, эти-ленпропилена и других материалов. Внутренние объемы оболочек некоторых элементов сообщаются между собой. В целом КРУЭ секционированы по газу. Каждая секция имеет свою контрольно-измерительную газовую аппаратуру. Значение давления элегаза в КРУЭ выбирается с учетом создания необходимой электрической прочности. Так, для аппаратов напряжением 110 кВ при температуре 20°С необходимый уровень электрической прочности в наиболее слабых местах обеспечивается при абсолютном давлении 0,25 МПа. В секциях выключателей элегаз обычно находится под большим давлением, чем в других секциях. В эксплуатации секции заполняют элегазом под давлением до 110% номинального. Утечки газа составляют менее 5% в год. Давление в секциях контролируется по показаниям манометров или плотномеров при значительных колебаниях температуры окружающей среды. Ошибочные операции в КРУЭ, как правило, исключены благодаря применению электрических и механических блокировок. Положения коммутационных аппаратов проверяют по указателям положения, механически связанным с подвижными системами аппаратов. Предусмотрены также сигнализация лампами и возможность наблюдения за положением подвижных контактов через смотровые окна. 5. Основные показатели надежности высоковольтного оборудования. Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки. Долговечность - свойство объекта сохранять работоспособное состояние при установленной системе технического обслуживания и ремонта. Ремонтопригодность - свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта. Сохраняемость - свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования. Указанные важнейшие свойства надежности характеризуют определенные технические состояния объекта. Различают пять основных видов технического состояния объектов. Исправное состояние. Состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации. Неисправное состояние. Состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации. Работоспособное состояние. Состояние объекта, при котором значения всех параметров, характеризующих способность выполнять заданные функции, соответствуют требованиям нормативно-технической и (или) конструкторской (проектной) документации. Неработоспособное состояние. Состояние объекта, при котором значения хотя бы одного параметра, характеризующего способность выполнять заданные функции, не соответствует требованиям нормативно-технической и (или) конструкторской (проектной) документации. Предельное состояние. Состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна , либо восстановление его работоспособного состояния невозможно или нецелесообразно. Переход объекта (изделия) из одного вышестоящего технического состояния в нижестоящее обычно происходит вследствие событий: повреждений или отказов. Совокупность фактических состояний объекта, к примеру, электроустановки, и возникающих событий, способствующих переходу в новое состояние, охватывает так называемый жизненный цикл объекта, который протекает во времени и имеет определенные закономерности, изучаемые в теории надежности. Повреждение - событие, заключающееся в нарушении исправного состояния объекта при сохранении работоспособного состояния. Переход объекта из исправного состояния в неисправное не связан с отказом. Дефектом называется каждое отдельное несоответствие объекта установленным нормам или требованиям. Дефект отражает состояние отличное от отказа. В соответствии с определением отказа, как события, заключающегося в нарушении работоспособности, предполагается, что до появления отказа объект был работоспособен. Отказ может быть следствием развития неустраненных повреждений или наличия дефектов: царапин; потертости изоляции; небольших деформаций. В теории надежности, как правило, предполагается внезапный отказ, который характеризуется скачкообразным изменением значений одного или нескольких параметров объекта. На практике приходится анализировать и другие отказы, к примеру, ресурсный отказ, в результате которого объект приобретает предельное состояние, или эксплуатационный отказ, возникающий по причине, связанной с нарушением установленных правил или условий эксплуатации. При расчетах и анализе надежности широко используются термины "элемент" и "система". Под элементом понимается часть сложного объекта, которая имеет самостоятельную характеристику надежности, используемую при расчетах и выполняющую определенную частную функцию в интересах сложного объекта, который по отношению к элементу представляет собой систему. Например, изолятор в гирлянде изоляторов выполняет роль элемента, а гирлянда изоляторов - это система. На трансформаторной подстанции выключатели, отделители, разъединители, силовые трансформаторы и т.п. являются элементами, а сама подстанция является системой. Из приведенных примеров видно, что в зависимости от уровня решаемой задачи и степени объединения анализируемых аппаратов и устройств определенный объект может в одном случае быть системой, а в другом - элементом. Так при анализе надежности трансформатора его можно "разложить" на множество элементов: обмотки высокого и низшего напряжения, высоковольтные и низковольтные вводы, магнитопровод, бак трансформатора и т.д. С другой стороны, для трансформаторной подстанции трансформатор удобнее представить как элемент, у которого есть свои характеристики надежности, нормативно-техническая документация, требования к эксплуатации. ПОКАЗАТЕЛИ НАДЕЖНОСТИ В соответствии с ГОСТ 27.002-89 для количественной оценки надежности применяются количественные показатели оценки отдельных ее свойств: безотказности, долговечности, ремонтопригодности и сохраняемости, а также комплексные показатели, характеризующие готовность и эффективность использования технических объектов (в частности, электроустановок). Эти показатели позволяют проводить расчетно-аналитическую оценку количественных характеристик отдельных свойств при выборе различных схемных и конструктивных вариантов оборудования (объектов) при их разработке, испытаниях и в условиях эксплуатации. Комплексные показатели надежности используются главным образом на этапах испытаний и эксплуатации при оценке и анализе соответствия эксплуатационно-технических характеристик технических объектов (устройств) заданным требованиям. На стадиях экспериментальной отработки, испытаний и эксплуатации, как правило, роль показателей надежности выполняют статистические оценки соответствующих вероятностных характеристик. В целях единообразия все показатели надежности, в соответствии с ГОСТ 27.002-89, определяются как вероятностные характеристики. В данном пособии отказ объекта рассматривается как случайное событие, то есть заданная структура объекта и условия его эксплуатации не определяют точно момент и место возникновения отказа. Принятие этой, более распространенной, концепции предопределяет широкое использование теории вероятностей БИЛЕТ 8 1 Принципы работы ГЭС и Г АЭС. Гидроэлектроста́нция (ГЭС) — электростанция, в качестве источника энергии использующая энергию водного потока. Гидроэлектростанции обычно строят на реках, сооружая плотины и водохранилища. Принцип работы ГЭС достаточно прост. Цепь гидротехнических сооружений обеспечивает необходимый напор воды, поступающей на лопасти гидротурбины, которая приводит в действие генераторы, вырабатывающие электроэнергию. Необходимый напор воды образуется посредством строительства плотины, и как следствие концентрации реки в определенном месте, или деривацией — естественным током воды. В некоторых случаях для получения необходимого напора воды используют совместно и плотину, и деривацию. Непосредственно в самом здании гидроэлектростанции располагается все энергетическое оборудование. В зависимости от назначения, оно имеет свое определенное деление. В машинном зале расположены гидроагрегаты, непосредственно преобразующие энергию тока воды в электрическую энергию. Есть еще всевозможное дополнительное оборудование, устройства управления и контроля над работой ГЭС, трансформаторная станция, распределительные устройства и многое другое. Гидроаккумулирующая электростанция (ГАЭС) — гидроэлектростанция, используемая для выравнивания суточной неоднородности графика электрической нагрузки. ГАЭС использует в своей работе либо комплекс генераторов и насосов, либо обратимые гидроэлектроагрегаты, которые способны работать как в режиме генераторов, так и в режиме насосов. Во время ночного провала энергопотребления ГАЭС получает из энергосети дешёвую электроэнергию и расходует её на перекачку воды в верхний бьеф(насосный режим). Во время утреннего и вечернего пиков энергопотребления ГАЭС сбрасывает воду из верхнего бьефа в нижний, вырабатывает при этом дорогую пиковую электроэнергию, которую отдаёт в энергосеть (генераторный режим).. 2 Каковы причины возникновения асинхронных режимов в электрических системах? Причины возникновения асинхронных режимов. По каким признакам; находясь на щите управления или в машинном зале, можно узнать, что данный генератор находится в асинхронном режиме? В чем опасность асинхронного режима для асинхронно работающих генераторов и для системы, в которой эти генераторы работают? Как изменяются характеристики и параметры элементов системы при асинхронном режиме (генераторов, первичных двигателей, нагрузки, линий электропередач)? При каких основных допущениях рассчитываются асинхронный режим и ресинхронизация работающего асинхронно генератора или части системы? Как изменится режим синхронного генератора после потери возбуждения (отключение возбудителя)? В системе, в ее установившемся режиме непрерывно происходят малые возмущения (изменяются нагрузки, мощности генераторов под действием случайных толчков и регуляторов скорости или ручного регулирования) и непрерывно изменяется частота. Осциллограммы частоты в установившемся режиме системы: а — при автоматическом регулирован!
3 Прямой удар молнии в ВЛЭП. Формы волн грозовых перенапряжений в зависимости от места удара молнии в ВЛЭП. Прямой удар молнии в ЛЭП. Прямой удар молнии в опору ЛЭП ПУМ может произойти в провод (трос) или в опору. Можно считать, что вероятности ударов равны 0,5. При ударе молнии в опору по ней протекает ток через заземлитель опоры в землю. На опоре наводится напряжение, которое имеет два основных слагаемых Удар молнии в середину пролёта.ЛЭП без тросовой защиты При ударе молнии в середину пролёта ЛЭП ток растекается в каждую сторону и на изоляторе ближейших опор возникнетперенапряжение U»Iм*Z/2; Z-волновое сопротивление провода Z=400¸450 Ом для проводов ВЛ Z=50¸100 Ом для кабельных линий При U>U50 — пробой провод — траверса Для ЛЭП 110 кВ U50 =700 кВ. Уже на фронте волны при токе ~ 3 кА произойдёт перекрытие по воздуху гирлянды изоляторов. Любой удар молнии в провод для ЛЭП с заземленной нейтралью приводит к импульсному перекрытию и отключению Удар молнии в ЛЭП с тросовой защитой
4 Высоковольтные линии электропередачи, основное оборудование, выбор элементов линий электропередачи Высоковольтная линия электропередачи, линия электропередачи напряжением выше 1 кв. Высоковольтная линия электропередачи бывают воздушные и подземные (подводные). Воздушной Высоковольтная линия электропередачиназывают устройство для передачи и распределения электрической энергии по проводам, расположенным на открытом воздухе и закреплённым на опорах при помощи изоляторов и арматуры. Опоры, изготовленные из дерева, железобетона или металла, отстоят одна от другой на 50—500 м в зависимости от марки провода и типа опоры (см. Опора линий электропередачи). Расстояние от провода до земли составляет не менее 6—8 м. Подземные (подводные) Высоковольтная линия электропередачи, в которых используются провода в специальной изоляции (см. Силовой кабель), применяют для распределения энергии на территории городов и промышленных предприятий, а также при переходе через широкие водные преграды. Основные элементы ВЛ Трасса — положение оси ВЛ на земной поверхности. Пикеты (ПК) — отрезки, на которые разбита трасса, длина ПК зависит от номинального напряжения ВЛ и типа местности. Нулевой пикетный знак обозначает начало трассы. Центровой знак на трассе строящейся ВЛ обозначает центр расположения опоры. Производственный пикетаж — установка пикетных и центровых знаков на трассе в соответствие с ведомостью расстановки опор. Фундамент опоры — конструкция, заделанная в грунт или опирающаяся на него и передающая ему нагрузку от опоры, изоляторов, проводов (тросов) и от внешних воздействий (гололёда, ветра). Основание фундамента — грунт нижней части котлована, воспринимающий нагрузку. Пролёт (длина пролёта) — расстояние между центрами двух опор, на которых подвешены провода. Различают промежуточный пролёт (между двумя соседними промежуточными опорами) и анкерный пролёт (между анкерными опорами). Переходный пролёт — пролёт, пересекающий какое-либо сооружение или естественное препятствие (реку, овраг). Угол поворота линии — угол α между направлениями трассы ВЛ в смежных пролётах (до и после поворота). Стрела провеса — вертикальное расстояние между низшей точкой провода в пролёте и прямой, соединяющей точки его крепления на опорах. Габарит провода — вертикальное расстояние от провода в пролёте до пересекаемых трассой инженерных сооружений, поверхности земли или воды. Шлейф (петля) — отрезок провода, соединяющий на анкерной опоре натянутые провода соседних анкерных пролётов. 5 Распределительные устройства с элегазовой изоляцией. В КРУЭ различных конструкций в качестве изолирующей среды применяется элегазовая изоляция. Элегаз (шестифтористая сера, SF6) — газ без цвета и запаха, тяжелее воздуха. Состоит из 21,95 % серы и 78,05 % фтора. Плотность элегаза при Т = 273 К и р = 0,1 МПа составляет 6,56 кг/м3. Абсолютная диэлектрическая постоянная 1,0021. Элегаз обладает высокой электрической прочностью, дугогасящей и теплоотводящей способностью и имеет относительно высокое давление насыщенных паров в диапазоне рабочих температур электротехнического оборудования. Элегазовая изоляция обеспечивает надёжную защиту от электрического тока высокого напряжения. Элегаз крайне инертен химически и при отсутствии в нем примесей абсолютно безвреден для человека. Безвреден элегаз и в смеси с воздухом. Но при этом следует помнить, что вследствие нарушения технологии производства элегаза или его разложения в аппарате (например, КРУЭ) под действием электрических разрядов (дугового, коронного, частичных) в элегазе могут возникнуть чрезвычайно активные в химическом отношении и вредные для человека примеси, а также различные твердые соединения, оседающие на части конструкции аппарата и способные ухудшить его электроизоляционные характеристики. Интенсивность образования таких примесей и вредные последствия значительно усиливаются при наличии в элегазе примеси кислорода и особенно паров воды. Ранние конструкции КРУЭ предусматривали сложное техническое обслуживание электроустановок, в которых использовалась элегазовая изоляция. В современных КРУЭ предусматривается минимальное техническое обслуживание. Современная элегазовая изоляция, выполненная в виде полностью герметичных блоков, не требует замены изолирующей среды в т
Популярное: Почему стероиды повышают давление?: Основных причин три... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (3136)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |