Мегаобучалка Главная | О нас | Обратная связь


Гематотестикулярный барьер



2016-01-26 1206 Обсуждений (0)
Гематотестикулярный барьер 0.00 из 5.00 0 оценок




Барьер формируется тесно сомкнутыми между собой клетками Сертоли, которые являются поддерживающими эпителиоцитами семенных канальцев и питающими клетками сперматогоний, собственная оболочка семенных канальцев,


стенка сосудов и белочная оболочка

Барьер препятствует проникновению цитотоксинов из крови в семенные канальцы.

Гематотестикулярный барьер выполняет также функцию генетической защиты наиболее ранимых мейотически делящихся сперматоцитов и находящихся в фазе конденсации хроматина сперматид.

Таким образом, гематотестикулярный барьер — один из важных механизмов, контролирующих сперматогенез и плодовитость. Он изолирует аутоантигенные половые клетки от иммунологического аппарата организма, обеспечивает их генетическую защиту и участвует в гормональной регуляции сперматогенеза.

 

 

Билет 14

1. Образование, строение и функции зародышевых оболочек и провизорных органов у человека.

Образование эктодермы и энтодермыКлетки зародышевого диска делятся в тангенциальной плоскости, то есть происходит его расщепление (деляминация) на два слоя. В результате этого зародышевый диск уже состоит из двух слоев клеток. Верхний слой клеток — это эктодерма (эпибласт), нижний слой — энтодерма (гипобласт)

Образование мезодермыпроисходит из клеток первичной полоски. Клетки первичной полоски, образовавшейся в эктодерме, прорастают в пространство между экто- и энтодермой и там разрастаются, образуя мезодерму.

Дифференцировка мезодермы и образование мезенхимыСразу после своего образования мезодерма подразделяется на два

главных отдела (Рис. Л-С, Т6): сомиты — спинной отдел и спланхнотом — брюшной отдел. Сомиты разделяются на три части: дерматом, склеротом, миотом. Спланхнотом делится на висцеральный и париетальный листки, между которыми находится вторичная полость тела — целом. Висцеральный и париетальный листки дают начало висцеральным и париетальным серозным оболочкам. Из мезенхимы развивается вся соединительная ткань.

 

название образование строение функции
амнион образуется путем выселения клеток из эктодермы (эпибласта), Образуемая этими клетками жидкость раздвигает выселившиеся клетки эктодермы с формированием одной полости, заполненной жидкостью внезародышевая эктодерма и внезародышевая мезенхима образует водную среду вокруг зародыша, защита от механических воздействий, защита от инфекций, выведение продуктов обмена плода
желточный мешок образуется путем обрастания энтодермой (гипобластом) внутренней поверхности желточного пузырька внезародышевая энтодерма и внезародышевая мезенхима образование первых клеток крови и кровеносных сосудов (мезенхима), образование первичных половых клеток (энтодерма)
аллантоис образуется как вырост из вентральной стенки заднего отдела первичной кишки внезародышевая энтодерма и внезародышевая мезенхима по аллантоису растут сосуды к формирующейся плаценте
плацента образуется последовательно в 3 этапа: трофобласт- хорион-плацента ОБРАЗОВАНИЕ ТРОФОБЛАСТА- после первого деления дробления образуется первая клетка трофобласта, потом она многократно делится, и формируются первичные ворсинки трофобласта ОБРАЗОВАНИЕ ХОРИОНА- к трофобласту подрастает внезародышевая мезенхима и возникает хорион (вторичные ворсинки хориона), а затем к ним подрастают кровеносные сосуды и возникают третичные ворсинки хориона ОБРАЗОВАНИЕ ПЛАЦЕНТЫ- хорион соединяется с decidua basalis и образуется плацента, так как плацента - это хорион + decidua basalis первичные ворсинки трофобласта- образованы только клетками трофобласта хорион- состоит из трофобласта и внезародышевой мезенхимы вторичные ворсинки хорионасостоят из трофобласта и внезародышевой мезенхимы третичные ворсинки хорионасостоят из трофобласта, внезародышевой мезенхимы и кровеносных сосудов плацента- состоит из хориона (плодная часть) и decidua basalis (материнская часть) Питание и газообмен плода, выведение продуктов обмена плода, регулирование поступления веществ от матери к плоду, иммунологическая защита плода, выработка гормонов и биологически- активных веществ, необходимых для развития зародыша и для течения беременности

 

2. Мышечные ткани, их классификации. Гладкая мышечная ткань: источники развития, строение, регенерация, иннервация.

Классификация

I. Морфофункциональный принцип:

1. Гладкие (неисчерченные) мышечные ткани

Структурно-функциональной единицей ГМТ является гладкомышечная клетка или леомиоцит. Иннервируется вегетативной нервной системой, т.е. несознательно.

2. Поперечнополосатые (исчерченные) мышечные ткани

Структурно-функциональной единицей является мышечное волокно. Иннервируется соматической нервной системой, т.е. сознательно.

II. Гистогенетический принцип:

1. ГМТ

1) мезенхимные (из десмального зачатка в составе мезенхимы),

2) эпидермальные (из кожной эктодермы и из прехордальной пластинки),

3) нейральные (из нервной трубки),

2. ППМТ

1) Скелетные МТ - соматические (миотомные).

2) Сердечные МТ - целомические (из миоэпикардиальной пластинки висцерального листка сомита)

Гладкая мышечная тканьобразует стенки полых органов, сосудов и в виде отдельных пучков располагается внутри органов (строма). В эмбриогенезе образуется из мезенхимы и эпидермиса (миоэпителиальные клетки).

Структорно-функциональной единицей гладкой ткани является гладкий миоцит. Чаще всего он имеет веретеновидную или звездчатую форму. Размеры в ширину 6-10 мкм, в длину 25-50 мкм, в беременной матке длина до 500 мкм. В средней части располагается ядро овальной формы, вокруг ядра располагается небольшое кол-во органелл, основной объем клетки занят миофибриллами, которые располагаются продольно, а также под углом друг к другу, ―сшивая‖ таким образом противоположные концы клетки. Миофибриллы состоят из длинных тонких актиновых и коротких миозиновых нитей.

Мышечные клетки располагаются в шахматном порядке, образуя мышечный пласт. Снаружи каждая клетка ограничена базальной мембраной, которая вырабатывается клеткой. Между клетками располагаются межклеточные пространства, в которых находятся тонкие прослойки соединительной ткани с кровеносными и лимфатическими капиллярами и нервными волокнами. Эти прослойки называются эндомизием. Более крупные прослойки, отделяющие пучки мышечных клеток называются перимизием. Соединительная ткань,


ограничивающая всю мышцу, называется эпимизием.

Гладкая ткань характеризуется тоническим сокращением–это медленно нарастающее сокращение и постепенное расслабление. Регенерация. Такая регенерация осуществляется не столько на тканевом, сколько на клеточном уровне: миоциты растут, в цитоплазме активизируются синтетические процессы, количество миофиламентов увеличивается (рабочая гипертрофия клеток). Не исключена, однако, и пролиферация клеток (т.е. гиперплазия).

В составе органов миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффузно, возбуждая сразу многие клетки

3. Почка. Источники и основные этапы развития, строение. Фильтрационный барьер.

Снаружи покрыта тонкой соединительнотканной капсулой. В почке выделяют корковое вещество, оно содержит почечные тельца и извитые почечные канальцы, кнутри в почке располагается мозговое вещество в виде пирамид. Основание пирамид обращено к корковому веществу, а верхушка пирамид открывается в почечную чашечку. Всего около 12 пирамид.

Пирамиды состоят из прямых канальцев, из нисходящих и восходящих канальцев петель нефрона и собирательных трубочек. Часть прямых канальцев в корковом веществе располагаются группами и такие образования называются мозговыми лучами.

Проксимальные и дистальные отделы построены из извитых канальцев, а петля из прямых канальцев.

РазвитиеВ течение эмбрионального периода закладываются последовательно три парных выделительных органа:

• передняя почка (предпочка, pronephros);

• первичная почка (mesonephros);

• постоянная почка (окончательная, metanephros).

Предпочкаобразуется из передних 8-10 сегментных ножек (нефротомов) мезодермы.

Первичная почка (мезонефрос)формируется из большого числа сегментных ножек (около 25), расположенных в области туловища зародыша. Сегментные ножки, или нефротомы, отшнуровываются от сомитов и спланхнотома и превращаются в канальцы первичной почки. Окончательная почка (метанефрос) закладывается у зародыша на 2-м месяце,но развитие ее заканчивается лишь после рождения ребенка. Эта почка образуется из двух источников — мезонефрального (Вольфова) протока и нефрогенной ткани, представляющей собой не разделенные на сегментные ножки участки мезодермы в каудальной части зародыша.

Нефрон (nephronum)– это структурно-функциональная единица почки. Нефрон переходит в собирательную трубочку, которая продолжается в сосочковый канал, открывающийся на вершине пирамиды в полость почечной чашки.

Каждый нефрон включает: двустенную чашеобразную капсулу — капсулу Шумлянского-Боумена и отходящий от неѐ длинный эпителиальный каналец (с различными отделами). Концом нефрона считается место его впадения в одну из собирательных почечных трубочек. Капсула Шумлянского-Боумена почти со всех сторон окружает капиллярный клубочек (glomerulus). Соответственно, почечное тельце (тельце Мальпиги) включает капиллярный клубочек и окружающую его капсулу.

От капсулы клубочка отходит проксимальный извитой каналец, делающий несколько петель возле почечного тельца. Проксимальный извитой каналец продолжается в петлю нефрона (петлю Генле). Нисходящая часть петли Генле (тонкий каналец) спускается вниз - по направлению к мозговому веществу (чаще всего, входя в него); восходящая часть (дистальный прямой каналец), более широкая, вновь поднимается по направлению к почечному тельцу нефрона.

В районе почечного тельца петля Генле переходит в дистальный извитой каналец. Дистальный извитой каналец одной своей петлѐй обязательно касается почечного тельца — между 2 сосудами (входящим и выходящим из клубочка на его вершине). Дистальный извитой каналец - последний отдел нефрона. Он впадает в собирательную почечную трубочку. Собирательные трубочки расположены почти перпендикулярно поверхности почки: вначале идут в составе мозговых лучей в корковом веществе, затем входят в мозговое вещество и у вершин пирамид впадают в сосочковые каналы, которые далее открываются в почечные чашки.

Все почечные тельца лежат в корковом веществе. Извитые канальцы (проксимальный и дистальный) тоже находятся в коре, но положение петли Генле нефронов может существенно различаться. В связи с этим нефроны подразделяют на 3 типа:

1. Короткие корковые нефроны. Составляют не более 1% от всех нефронов. Имеют очень короткую петлю, не достигающую мозгового вещества. Поэтому нефрон целиком лежит в коре.

2. Промежуточные корковые нефроны. Преобладают по численности (~ 80% всех нефронов). Часть петли «спускается» в наружную зону мозгового вещества.

3. Длинные (юкстамедуллярные, околомозговые) нефроны. Составляют не более 20% всех нефронов. Почечные тельца их находятся в корковом веществе на границе с мозговым веществом. Петля Генле - очень длинная и почти целиком находится в мозговом веществе.

Фильтрационный барьер

Все три названных компонента - эндотелий капилляров сосудистого клубочка, подоциты внутреннего листка капсулы и общую для них гломерулярную базальную мембрану- принято перечислять в составе фильтрационного барьера, через который из крови в полость капсулы фильтруются составные части плазмы крови, образующие первичную мочу. Если более внимательно проанализировать данную ситуацию, то к данному перечислению необходимо внести некоторые уточнения; в этом случае состав собственно фильтрационного барьера будет выглядеть следующим образом:

1. фенестры и щели эндотелия капилляров;

2. 3-слойная базальная мембрана;

3. щелевые диафрагмы подоцитов.

Примечание: избирательная проницаемость фильтрационного барьера может регулироваться некоторыми биологически активными веществами: например, повышению скорости фильтрации способствует предсердный натрийуретический фактор (пептид), а также ряд воздействий со стороны мезангиальных компонентов.

 

 

Билет 15

1. Ядро, его значение в жизнедеятельности клетки. Основные компоненты и их структурно-функциональная характеристика.

  строение  
Хроматин Комплекс ДНК с гистоновыми и негистоновыми белками; гетерохроматин— сильноконденсированный, неактивный; эухроматин— слабоконденсированный, активный; в митозе хроматин максимально конденсируется и получает название хромосом Хранение и передача наследственной информации, управление всеми процессами в клетке
Ядрышко Округлое темно-окрашенное тельце в ядре; место образования рибосом; формируется вокруг участка ДНК, где закодирована структура рибосомальных РНК Образование рибосомальных РНК и сборка субъединиц рибосом
Нуклеоплазма Жидкая среда ядра, содержащая молекулы РНК, структурные и регуляторные белки, углеводы, молекулы АТФ Диффузия веществ внутри ядра; в ней идут сплайсинг и процессинг РНК
Ядерная оболочка Состоит из 2 мембран, между которыми имеется перинуклеарное пространство, оно сообщается с полостью гранулярного эндоплазматического ретикулума. К внутренней поверхности Структурное разграничение ядра и цитоплазмы; разграничение по времени транскрипции и трансляции.Ядерная

  ядерной оболочки прикреплены специальные белки, образующие ядерную пластинку. В ядерной оболочке имеются отверстия — ядерные поры, которые по краям окружены специальными белками, регулирующими пропускную способность ядерной поры пластинкаслужит для прикрепления молекул ДНК и для сборки ядерной оболочки после митоза. Поры обеспечивают транспорт веществ в ядро и из ядра

2. Волокнистая соединительная ткань. Классификация, источники развития, тканевые элементы. Строение сухожилий и связок.

В зависимости от количественного соотношения между компонентами межклеточного вещества - волокнами и основным веществом и в соответствии с типом волокон различают тря вида соединительных тканей: рыхлую соединительную ткань, для которой характерно количественное преобладание основного вещества над комплексом разнообразно ориентированных и рыхло расположенных коллагеновых и эластических волокон; плотную соединительную ткань, в ней резко выражено преобладание волокон над основным веществом, и ретикулярную ткань, содержащую в своем составе специфические ретикулярные волокна.

Основными клетками, создающими вещества, необходимые для построения волокон в рыхлой и плотной соединительной ткани, являются фибробласты, в ретикулярной ткани - ретикулярные клетки. Рыхлая соединительная ткань отличается особенно большим разнообразием клеточного состава.

 

ПЛОТНАЯ ВОЛОКНИСТАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ (ПВСТ)

Общей особенностью для ПВСТ является преобладание межклеточного вещества над клеточным компонентом, а в межклеточном веществе волокна преобладают над основным аморфным веществом и располагаются по отношению друг к другу очень близко (плотно) - все эти особенности строения в сжатой форме отражены в названии данной ткани.

Клетки ПВСТпредставлены в подавляющем большинстве фибробластами и фиброцитами, в небольшом количестве встречаются макрофаги, тучные клетки, плазмоциты, малодифференцированные клетки и т.д.

Межклеточное веществосостоит из плотно расположенных коллагеновых волокон, основного вещества мало.

ПВСТ хорошо регенерирует за счет митоза малоспециализированных фибробластов и выработки ими межклеточного вещества (коллагеновых волокон) после дифференцировки в зрелые фибробласты.

Функция ПВСТ- обеспечение механической прочности.

ПЛОТНАЯ ВОЛОКНИСТАЯ НЕОФОРМЛЕННАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ

Особенности: много волокон, мало клеток, волокна имеют беспорядочное расположение.

Локализация: сетчатый слой дермы, надкостница, надхрящница, капсулы паренхиматозных органов. КЛЕТКИклеток очень мало; имеются, в основном, фибробласты, могут встретиться тучные клетки, макрофаги МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО ВОЛОКНА: коллагеновые и эластические, волокон – много

ОСНОВНОЕ (АМОРФНОЕ) ВЕЩЕСТВО: гликозаминогликаны и протеогликаны в небольшом количестве ПЛОТНАЯ ВОЛОКНИСТАЯ ОФОРМЛЕННАЯ СОЕДИНИТЕЛЬНАЯ ТКАНЬ

Особенности: много волокон, мало клеток, волокна имеют упорядоченное расположение - собраны в пучки

Локализация: сухожилия, связки, капсулы, фасции, фиброзные мембраны

КЛЕТКИклеток очень мало имеются, в основном, фибробласты, могут встретиться тучные клетки, макрофаги.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО ВОЛОКНА:коллагеновые и эластические; волокон - много; волокна имеют упорядоченное расположение, образуют толстые пучки.

ОСНОВНОЕ (АМОРФНОЕ) ВЕЩЕСТВО: гликозаминогликаны и протеогликаны в очень небольшом количестве

СУХОЖИЛИЕ Состоит из толстых, плотно лежащих параллельных пучков коллагеновых волокон. Они окружены тонкими прослойками рыхлой волокнистой неоформленной соединительной ткани; самые тонкие - пучки 1 порядка, их окружает эндотеноний пучки 2 порядка окружает перитеноний, само сухожилие представляет собой пучок 3 порядка.

3. Глаз: источники развития, оболочки глаза, их тканевой состав. Диоптрический аппарат глаза: строение, функции.

Источники развития: нервная трубка, мезенхима (с добавлением выселившихся из ганглиозной пластинки клеток нейроэктодермального происхождения), экто-дерма.

Закладка начинается в начале 3-й недели эмбрионального развития в виде глазных ямок в стенке еще незамкнутой нервной трубки, в дальнейшем из зоны этой ямки выпячиваются 2 глазных пузырька из стенки промежуточного мозга. Глазные пузырьки соединены с промежуточным мозгом при помощи глазного стебелька. Передняя стенка пузырьков впячивается и пузырьки превращаются в двухстенные глазные бокалы.

Одновременно с этим эктодерма напротив глазных пузырьков впячиваясь образует хрусталиковые пузырьки. Эпителиоциты задней полусферы хрусталикового пузырька удлиняются и превращаются в длинные прозрачные структуры - хрусталиковые волокна. В хрусталиковых волокнах синтезируется прозрачный белок - кристаллин. В последующем в хрусталиковых волокнах- клетках органоиды исчезают, ядра сморщиваются и исчезают. Таким образом образуется хрусталик - своеобразная эластичная линза. Из эктодермы перед хрусталиком образуется передний эпителий роговицы.

Внутренний листок 2-х стенного глазного бокала дифференцируется в сетчатку, принимает участие при формировании стекловидного тела, а наружный листок образует пигментный слой сетчатки. Материал края глазного бокала вместе с мезенхимой участвует при формировании радужки.

Из окружающей мезенхимы образуется сосудистая оболочка и склера, цилиарная мышца, собственное вещество и задний эпителий роговицы. Мезенхима также участвует при образовании стекловидного тела, радужки.

В стенке глаза выделяют 3 оболочки.

1. Наружная оболочка — фиброзная. В задней части она представлена склерой (белочной оболочкой), в передней части —

роговицей.

2. Средняя оболочка — сосудистая. В передней части ее производные—ресничное тело (цилиарное) и радужная оболочка.

3. Внутренняя оболочка — сетчатка. В задней стенке располагается зрительная сетчатка, в передней — смешанная часть, которая покрывает изнутри ресничное тело и радужку.

Имеется хрусталик и стекловидное тело, которое занимает основную полость глаза. Выделяют переднюю камеру глаза и заднюю - между радужкой и хрусталиком, полость заполнена водянистой влагой.

Сетчатка, внутренняя чувствительная оболочка глазного яблока, состоит из: наружного пигментного слоя

внутреннего светочувствительного нервного.

Функционально выделяют:

1) заднюю (бóльшую) зрительную часть сетчатки (соприкасается со стекловидным телом, фоторецепторные клетки). В заднем полюсе глаза:

слепое пятно - место выхода зрительного нерва,

желтое пятно - место наилучшего видения с небольшим углублением — центральной ямкой, есть только фоторецепторные клетки, в основном - колбочки, а другие слои как бы раздвинуты.

2) цилиарную, покрывающую цилиарное тело

3) радужковую, покрывающую заднюю поверхность радужки.

СКЛЕРА

Образована пластинчатой соединительной тканью, в которой коллагеновые волокна образуют прочные соединительнотканые пластинки, между которыми расположены фибробласты. Склера выполняет защитную функцию, формообразующую и через неѐ не проходят световые потоки, она не прозрачна. Склера содержит кровеносные сосуды. Спереди склера переходит в роговицу.


Ресничное тело. Ресничное тело является производным сосудистой и сетчатой оболочек. Выполняет функцию фиксации хрусталика и изменения его кривизны, тем самым участвуя в акте аккомодации.

Ресничное тело и ресничные отростки относятся к аккомодационному аппарату, способны изменять кривизну хрусталика.

С возрастом в ресничном теле наступает атрофия мышц, становится больше соединительной ткани, хрусталик частично теряет способность к аккомодации; поэтому в старческом возрасте преобладает дальнозоркость.

Радужка. Представляет собой дисковидное образование с отверстием изменчивой величины (зрачок) в центре. Она является производным сосудистой (в основном) и сетчатой оболочек. Сзади радужка покрыта пигментным эпителием сетчатой оболочки. Расположена между роговицей и хрусталиком на границе между передней и задней камерами глаза. Край радужки, соединяющий ее с цилиарным телом, называется цилиарным краем. Строма радужки состоит из рыхлой волокнистой соединительной ткани, богатой пигментными клетками. Здесь располагаются гладкие миоциты, образующие мышцы, суживающие или расширяющие зрачок.

В радужке различают 5 слоев:

1) передний эпителий, покрывающий переднюю поверхность радужки, представлен плоскими полигональными клетками. Он является продолжением эпителия, покрывающего заднюю поверхность роговицы.

2) наружный пограничный (бессосудистый) слой, состоит из основного вещества, в котором располагаются значительное количество фибробластов и пигментных клеток. Различное положение и количество меланинсодержащих клеток обусловливают цвет глаз. У альбиносов пигмент отсутствует и радужка имеет красный цвет в связи с тем, что через ее толщу просвечивают кровеносные сосуды. В пожилом возрасте наблюдается депигментация радужки и она делается более светлой.

3) сосудистый слой, состоит из многочисленных сосудов, пространство между которыми заполнено рыхлой волокнистой соединительной тканью с пигментными клетками.

4) внутренний пограничный слой, строение аналогично наружному пограничному слою.

5) пигментный эпителий, является продолжением двухслойного эпителия сетчатки, покрывающего цилиарное тело и отростки.

 

Билет 16

1. Принципы и методы окраски гистологических препаратов. Понятие о ―базофилии‖ и ―оксифилии‖.

I. Основной метод - микроскопирование.

А. Световая микроскопия - исследования обычным световым микроскопом. Б. Специальные методы микроскопирования:

В. Электронная микроскопия:

II. Специальные (немикроскопические) методы:

1.Цито- или гистохимия -суть заключается в использовании строго специфических химических реакций со светлым конечным продуктом в клетках и тканях для определения количества различных веществ (белков, ферментов, жиров, углеводов и т. д.). Можно применить на уровне светового или электронного микроскопа.

2. Цитофотометрия - метод применяется в комплексе с 1 и дает возможность количественно оценить выявленные цитогистохимическим методом белки, ферменты и т.д.

3. Авторадиография - вводят в организм вещества, содержащие радиоактивные изотопы химических элементов..

4. Рентгеноструктурный анализ.

5. Морфометрия.

6. Микрохирургия .

6. Метод культивирования клеток и тканей.

7. Ультрацентрифугирование.

8. Экспериментальный метод.

9. Метод трансплантации тканей и органов.

 

Если цитоплазма клетки имеет щелочную реакцию, то она окрашивается кислыми красителями, т.е. оксифильно или ацидофильно. Наиболее часто в качестве кислого красителя применяется эозин, поэтому структуры, которые окрашиваются кислыми красками, часто называются эозинофильными. Если цитоплазма клетки имеет кислую реакцию, то она окрашивается щелочными или основными красителями, т.е. проявляет свойства базофилии. Как правило, в качестве щелочного красителя применяют гематоксилин, который окрашивает цитоплазму в сине-фиолетовый цвет. Основными красителями окрашивается цитоплазма всех клеток, которые активно синтезируют белок, а также ядра всех клеток, так как они содержат нуклеиновые кислоты. Структуры, которые одновременно окрашиваются и кислыми и основными красителями, называются нейтрофильными или полихроматофильными. Примером могут быть гранулы нейтрофильных лейкоцитов.

Некоторые гистологические структуры способны изменять цвет основного красителя. Эта способность называется метахромазией.

Метахроматично окрашивается основное вещество соединительной ткани, хрящевой ткани, гранулы базофилов.

 

2. Рыхлая волокнистая соединительная ткань. Строение и функции клеток и межклеточного вещества.

Особенности:

много клеток, мало межклеточного вещества (волокон и аморфного вещества) Локализация: образует строму многих органов, адвентициальная оболочка сосудов, располагается под эпителиями - образует собственную пластинку слизистых оболочек, подслизистую основу, располагается между мышечными клетками и волокнами

Функции:

1. Трофическая функция: располагаясь вокруг сосудов рвст регулирует обмен веществ между кровью и тканями органа.

2. Защитная функция обусловлена наличием в рвст макрофагов, плазмоцитов и лейкоцитов. Антигены прорвавшиеся через I - эпителиальный барьер организма, встречаются со II барьером - клетками неспецифической (макрофаги, нейтрофильные гранулоциты) и иммунологической защиты (лимфоциты, макрофаги, эозинофилы).

3. Опорно-механическая функция.

4. Пластическая функция - участвует в регенерации органов после повреждений.

 

КЛЕТКИ (10 видов) Фибробласты Макрофаги

Тучные клетки (синонимы: тканевой базофил, лаброцит, мастоцит) Округло-овальная, крупная, иногда отростчатая клетка, в цитоплазме очень много базофильных гранул. Гранулы содержат гепарин и гистамин, серотонин. Гепарин снижает проницаемость межклеточного вещества и свертываемость крови, оказывает противовоспалительное влияние. Гистамин же выступает как его антагонист.

Плазмоциты

Образуются из В-лимфоцитов. По морфологии имеют сходство с лимфоцитами, хотя имеют свои особенности. Ядро круглое, располагается эксцентрично. ядро плазмоцита срванивают "колесом со спицами". Цитоплазма базофильна, со светлым "двориком" около ядра. Функция: являются эффекторными клетками гуморального иммунитета - вырабатывают специфические антитела (гамма-глобулины)

Лейкоциты

Липоциты (синонимы: адипоцит, жировая клетка).


1). Белые липоциты - округлые клетки с узенькой полоской цитоплазмы вокруг одной большой капельки жира в центре. Функция: белые липоциты накапливают жир про запас (высококалорийный энергетический материал и вода). 2). Бурые липоциты - округлые клетки с центральным расположением ядра. В цитоплазме много митохондрий с высокой активностью железосодержащего (придает бурый цвет) окислительного фермента цитохромоксидазы. Функция: бурые липоциты не накапливают жир, а наоборот, "сжигают" его в митохондриях, а освободившееся при этом тепло расходуется для согревания крови в капиллярах, т.е. участие в терморегуляции.

Адвентициальные клетки

Это малоспециализированные клетки, сопровождающие кровеносные сосуды. Они имеют уплощенную или веретенообразную форму с овальным ядром. В процессе дифференцировки эти клетки могу, превращаться, в фибробласты, миофибробласты и адипоциты.

Перициты

Располагаются в толще базальной мембраны капилляров; участвуют в регуляции просвета гемокапилляров, тем самым регулируют кровоснабжение окружающих тканей.

Эндотелиальные клетки сосудов Образуются из малодифференцированных клеток мезенхимы, покрывают изнутри все кровеносные и лимфатические сосуды; вырабатывают много БАВ.

Меланоциты (пигментные клетки, пигментоциы) Отростчатые клетки с включениями пигмента меланина в цитоплазме. Происхождение: из клеток мигрировавших с нервного гребня. Функция: защита от УФЛ.



2016-01-26 1206 Обсуждений (0)
Гематотестикулярный барьер 0.00 из 5.00 0 оценок









Обсуждение в статье: Гематотестикулярный барьер

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1206)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)