Мегаобучалка Главная | О нас | Обратная связь


Распределение ресурсов компьютера



2016-09-16 849 Обсуждений (0)
Распределение ресурсов компьютера 0.00 из 5.00 0 оценок




Помимо архитектуры аппаратных средств и параметров системной шины специфика любого компьютера определяется принятым стандартным распределением всех его ресурсов. Соблюдать правила, установленные этим распределением, должны и программисты (как системные, так и занимающиеся разработкой прикладных программ), и разработчики дополнительного оборудования, и даже те пользователи, которые просто хотят установить в компьютер новую плату расширения. В случае малейшего нарушения этих правил возможны как непредсказуемые сбои в работе компьютера, невозможность его начальной загрузки, так и полный выход компьютера из строя.

Под распределением ресурсов в данном случае понимается:

· распределение адресного пространства системной памяти, отведение отдельных областей памяти под особые цели;

· распределение адресного пространства устройств ввода/вывода, в том числе для системных средств компьютера;

· распределение каналов запроса прерываний, в том числе для системных устройств;

· распределение каналов запроса прямого доступа к памяти.

А теперь рассмотрим принятое в персональных компьютерах стандартное распределение ресурсов.

Подробное распределение адресов памяти описано в табл. 1.

Из таблицы видно, что для памяти, входящей в состав устройств ввода/вывода, отводится зона всего лишь в 92 Кбайта (адреса С8000…DFFFF). В этом пространстве может располагаться как оперативная память, так и постоянная память устройств ввода/вывода. Иногда память устройств ввода/вывода захватывает также и зону адресов С0000…С7FFF.

В табл. 1 представлено стандартное распределение номеров аппаратных прерываний и соответствующих им номеров в таблице векторов прерываний (INT).

 

Таблица 1. Распределение адресов памяти (адреса даны в шестнадцатеричном коде)
Адреса памяти Назначение
000000...0003FF Таблица векторов прерываний
000000...09FFFF Память DOS и пользовательских программ
0А0000...0АFFFF Память дисплея EGA или VGA
0B0000...0B7FFF Память монохромного дисплея MDA
0B8000...0BFFFF Память дисплея CGA
0C0000...0C3FFF ПЗУ BIOS для EGA/VGA
0C8000...0DFFFF Память устройств ввода/вывода
0E0000...0EFFFF Резерв ПЗУ ВIOS на материнской плате
0F0000...0FFFFF ПЗУ BIOS на материнской плате

Как видно из таблицы, большинство входов IRQ заняты системными ресурсами компьютера. Свободны (зарезервированы) только четыре канала: 10, 11, 12, 15, причем они находятся на 16-разрядной части разъема магистрали ISA. Правда, иногда в компьютерах применяется только один параллельный порт или (гораздо реже) только один последовательный порт, и тогда свободными оказываются еще IRQ3 и IRQ5. Сигналы IRQ0...IRQ2, IRQ8 и IRQ13 задействованы на системной плате и недоступны платам расширения.

Таблица 2. Распределение каналов аппаратных прерываний
Номер прерывания IRQ INT Назначение
Программируемый таймер
Контроллер клавиатуры
0A Каскадирование второго контроллера
Часы реального времени (только АТ)
Программно переадресовано на IRQ2
Резерв
Резерв
Резерв
Математический сопроцессор
Контроллер жесткого диска
Резерв
0B Последовательный порт COM2
0C Последовательный порт COM1
0D Параллельный порт LPT2
0E Контроллер гибкого диска
0F Параллельный порт LPT1

В компьютере используются два 8-разрядных контроллера прерываний. Сигналы IRQ0...IRQ7 относятся к первому из них, а IRQ8...IRQ15 — ко второму. Для каскадирования второго контроллера прерываний задействован вход IRQ2 (рис. 7.3). В связи с этим запросы прерывания имеют следующие приоритеты обслуживания в порядке возрастания: IRQ7, IRQ6, IRQ5, IRQ4, IRQ3, IRQ15, IRQ14, IRQ12, IRQ11, IRQ10, IRQ9. Такая схема включения сложилась исторически, так как в компьютере IBM PC XT использовался только один 8-канальный контроллер прерываний, а при переходе на IBM PC AT к нему был добавлен второй контроллер для удвоения количества каналов запросов прерываний. В современных компьютерах оба контроллера прерываний вместе с другими контроллерами могут входить в состав одной и той же микросхемы, но совместимость распределения прерываний по-прежнему обеспечивается.

Рис. 1.3. Включение двух контроллеров прерываний

Стандартное распределение каналов запроса прямого доступа к памяти представлено в табл. 3.

Как и в случае с контроллерами прерываний, здесь применяется два контроллера, причем один из них каскадируется через другой. На каждой линии DRQ должен быть один выход ISA -устройства. Каналы, соответствующие первому контроллеру ПДП (сигналы DRQ0...DRQ3 ), предназначены только для 8-битного обмена, а соответствующие второму контроллеру ( DRQ5...DRQ7 ) — для 16-битного. Канал DRQ4 используется для каскадирования двух контроллеров ПДП и поэтому недоступен пользователям. Сигнал запроса DRQ0 имеет самый высокий приоритет, сигнал DRQ7 — самый низкий. В IBM PC XT канал DRQ0 использовался для регенерации динамической памяти. Каждый канал ПДП может передавать данные в пределах 16-мегабайтного адресного пространства блоками длиной до 64 Кбайт (каналы 0, 1, 2, 3) или до 128 Кбайт (каналы 5, 6, 7).

Таблица 3. Стандартное распределение каналов прямого доступа к памяти
Номер канала ПДП Назначение
Резервный
Контроллер бисинхронного обмена SDLC
Накопитель на гибком диске
Резервный
Каскадирование первого контроллера
Резервный
Резервный
Резервный

Отметим также, что в некоторых компьютерах предусмотрена возможность так называемого "горячего подключения" внешних устройств (то есть без выключения питания компьютера). Режим PnP должен поддерживать и эту возможность, распределяя ресурсы не только при начальной загрузке, но и по мере подключения новых устройств.

3. Дополнительные интерфейсы персонального компьютера

В этой лекции рассказывается о некоторых часто используемых интерфейсах персонального компьютера, об их особенностях и протоколах обмена информацией по этим интерфейсам.

Интерфейс Centronics

Основным назначением интерфейса Centronics (отечественный аналог — стандарт ИРПР-М) является подключение к компьютеру принтеров различных типов (из-за чего его называют принтерным портом). Поэтому распределение контактов разъема, назначение сигналов, программные средства управления интерфейсом ориентированы именно на такое применение. В то же время, с помощью данного интерфейса можно подключать к компьютеру и многие другие стандартные внешние устройства (например, сканеры, дисководы и т.д.), а также нестандартные внешние устройства.

Назначение 36 контактов разъема Centronics и соответствующих им контактов разъема принтера приведено в табл. 8.1. В таблице символ I обозначает входной сигнал компьютера, а O — выходной сигнал.

Сигналы интерфейса Centronics имеют следующее назначение:

· D0...D7 — 8-разрядная шина данных для передачи из компьютера в принтер (предусматривается и возможность двунаправленной передачи данных).

· STROBE — сигнал стробирования данных. Данные действительны как по переднему, так и по заднему фронту этого сигнала. Сигнал говорит приемнику (принтеру) о том, что можно принимать данные с шины данных.

· -ACK — сигнал подтверждения принятия данных и готовности приемника (принтера) принять следующие данные. То есть реализуется асинхронный обмен.

· BUSY — сигнал занятости принтера обработкой полученных данных и неготовности принять следующую порцию данных. Активен также при переходе принтера в состояние off-line, при ошибке и при отсутствии бумаги. Компьютер начинает новый цикл передачи только после снятия -ACK и после снятия BUSY.

· -AUTO FD — сигнал автоматического перевода строки. Получив его, принтер переводит каретку на следующую строку текста. Остальные сигналы не являются обязательными.

· PE — сигнал конца бумаги. Получив его, компьютер переходит в режим ожидания. Если в принтер вставить лист бумаги, то сигнал снимается.

· SLCT — сигнал готовности приемника. С его помощью принтер сообщает о том, что он выбран и готов к работе. У многих принтеров имеет постоянно высокий уровень.

· -SLCT IN — сигнал, посредством которого компьютер сообщает принтеру о том, что тот выбран, и последует передача данных.

· -ERROR — сигнал ошибки принтера. Активен при внутренней ошибке, переходе принтера в состояние off-line или при отсутствии бумаги. Как видим, здесь многие сигналы дублируют друг друга.

· -INIT — сигнал инициализации (сброса) принтера. Его длительность составляет не менее 2,5 мкс. По нему происходит очистка буфера печати.

Таблица 4. Назначение контактов разъемов Centronics
Контакт разъема компьютера Сигнал I/O Контакт разъема принтера
-STROBE O
D0 O
D1 O
D2 O
D3 O
D4 O
D5 O
D6 O
D7 O
-ACK I
BUSY I
PE I
SLCT I
-AUTO FD O
-ERROR I
-INIT O
-SLCT IN O
18...25 GND - 16, 17, 19...30, 33

Временная диаграмма цикла передачи данных представлена на рис. 1.4. Перед началом цикла передачи данных компьютер должен убедиться, что сняты сигналы BUSY и -ACK. После этого выставляются данные, формируется строб, снимается строб, и снимаются данные. Принтер должен успеть принять данные с выбранным темпом. При получении строба принтер формирует сигнал BUSY, а после окончания обработки данных выставляет сигнал -ACK, снимает BUSY и снимает -ACK. Затем может начинаться новый цикл.

Максимальная длина соединительного кабеля по стандарту — 1,8 м. Максимальная скорость обмена — 100 Кбайт/с.

Формирование и прием сигналов интерфейса Centronics производится путем записи и чтения выделенных для него портов ввода/вывода. В компьютере может использоваться три порта Centronics, обозначаемых LPT1 (базовый адрес 378), LPT2 (базовый адрес 278) и LPT3 (базовый адрес 3BC).

Базовый адрес порта используется для передачи принтеру байта данных. Установленные на линиях данные можно считать из этого же порта.

Следующий адрес (базовый + 1) служит для чтения битов состояния принтера (бит 3 соответствует сигналу -ERROR, бит 4 — сигналу SLCT, бит 5 — сигналу PE, бит 6 — сигналу -ACK, бит 7 — сигналу BUSY ). Последний используемый адрес (базовый + 2) применяется для записи битов управления принтером (бит 0 соответствует сигналу -STROBE, бит 1 — сигналу -AUTO FD, бит 2 — сигналу -INIT, бит 3 — сигналу -SLCT IN и, наконец, бит 4, равный единице, разрешает прерывание от принтера).

Рис. 1.4. Временные диаграммы цикла передачи данных в Centronics (все временные интервалы указаны в наносекундах)

При сопряжении с компьютером через параллельный порт LPT какого-нибудь другого устройства (не принтера) назначение сигналов и порядок обмена могут быть другими, но тогда необходимы специальные программные драйверы, реализующие выбранные протоколы обмена. При разработке нестандартных внешних устройств, сопрягаемых с компьютером через Centronics, можно самостоятельно выбирать как назначение сигналов, так и протокол обмена.

Интерфейс RS-232C

Интерфейс RS-232C предназначен для подключения к компьютеру стандартных внешних устройств (принтера, сканера, модема, мыши и др.), а также для связи компьютеров между собой. Основными преимуществами использования RS-232C по сравнению с Centronics являются возможность передачи на большие расстояния (по стандарту длина соединительного кабеля может доходить до 15 метров) и гораздо более простой кабель (с меньшим количеством проводов). В то же время работать с RS-232C несколько сложнее. Данные в интерфейсе RS-232C передаются в последовательном коде (бит за битом) побайтно. Каждый байт обрамляется стартовым и стоповыми битами. Данные могут передаваться как в одну, так и в другую сторону по разным проводам (дуплексный режим). Скорость передачи — до 14,4 Кбайт/с (115,2 Кбит/с).

Компьютер имеет 25-контактный разъем (типа DB25P) или 9-контактный разъем (типа DB9P) для подключения кабеля интерфейса RS-232C. Назначение контактов разъема приведено в табл. 5 (в таблице применены обозначения: I — входной сигнал компьютера, O — выходной сигнал компьютера).

Таблица 5. Назначение контактов разъемов интерфейса RS-232C
Сигнал Контакт DB25P Контакт DB9P I/O
FG - -
-T x D O
-R x D I
RTS O
CTS I
DSR I
SG -
DCD I
DTR O
RI I

Чаще всего используется трех- или четырехпроводная связь (для двунаправленной передачи). Схема соединения двух устройств при четырехпроводной линии связи показана на рис. 1.5.

Рис. 1.5. Схема четырехпроводной линии связи для RS-232C

Для двухпроводной линии связи в случае передачи из компьютера во внешнее устройство используются сигналы SG и TxD. Все 10 сигналов интерфейса задействуются только при соединении компьютера с модемом.

Формат передаваемых данных показан на рис. 8.3. Собственно данные (содержащие 5, 6, 7 или 8 бит) сопровождаются стартовым битом, битом четности и одним или двумя стоповыми битами. Получив стартовый бит, приемник выбирает из линии биты данных через определенные интервалы времени. Очень важно, чтобы тактовые частоты приемника и передатчика были одинаковыми (допустимое расхождение — не более 10%). Скорость передачи по RS-232C может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с.

Рис. 1.6. Формат данных RS-232C



2016-09-16 849 Обсуждений (0)
Распределение ресурсов компьютера 0.00 из 5.00 0 оценок









Обсуждение в статье: Распределение ресурсов компьютера

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (849)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)