Распространение монохроматической плоской волны в анизотропной среде
Распространение света в анизотропных средах Тензор диэлектрической проницаемости анизотропной среды Состояние поляризации световых колебаний является ключевым для описания оптики анизотропных сред, например, кристаллов. В этом случае показатель преломления, а значит, и скорость световой волны зависят от выбранных в кристалле направлений. В отличие от изотропных диэлектриков, характеризующихся одним значением e, в кристаллах диэлектрическая проницаемость становится тензором второго ранга: , компоненты которого определяют связь проекций векторов D и E: . (1) Причиной этого является несовпадение по направлению вектора поляризуемости средыР с вектором Е и, как следствие, неколлинеарность векторов D и Е (рис. 1). Кристалл, в силу своей пространственной упорядоченности (гексагональной, тригональной, ромбоэдрической и т. п. симметрии) не может откликаться на внешнее воздействие так же, как изотропная среда: в одних направлениях диполи поляризуются легче, в других – труднее. Значения компонент тензора зависят от выбора системы координат. Можно показать, что соответствующим поворотом осей тензор может быть приведен к диагональному виду: . Оси координат, в которых тензор диэлектрической проницаемости диагонален, называются главными осями кристалла. Диагональные значения ex, ey и ez в этом случае называют главными значениями диэлектрической проницаемости, величины , , – главными показателями преломления, а скорости и т. д. – главными скоростями. Подчеркнем, что Vx, Vy, Vz не являются проекциями какого-либо вектора, а характеризуют анизотропию оптических свойств кристалла. Главная скорость – это скорость волны, поляризованной вдоль соответствующей главной оси. В дальнейшем будем всегда предполагать, что оси координат совпадают с главными осями, и соотношения (1) принимают вид (2) Если все три главных значения одинаковы: ex = ey = ez, то кристалл с оптической точки зрения эквивалентен изотропному телу. Это свойственно кристаллам с кубической симметрией решетки, например NaCl, используемой в качестве оптических элементов ИК диапазона. Если совпадают два главных значения: ex = ey ¹ ez, кристалл называется одноосным. К одноосным кристаллам относятся широко применяемые в оптике кварц и исландский шпат. Наконец, если все три главных значения различны: ex ¹ ey ¹ ez, кристалл называется двухосным. К таким кристаллам относится, например, слюда. Распространение монохроматической плоской волны в анизотропной среде Рассмотрим геометрические соотношения между основными векторами в электромагнитной волне. Введем единичный вектор нормали к волновому фронту N = k/ k, тогда: . (3) Направление переноса энергии в волне определяется вектором Пойнтинга . Определим лучевой вектор как s = S / S. Из свойств векторного произведения следует, что D^H, D^N, N^H, s^E, s^H, E^H. (4) Поскольку вектора D и E в анизотропной среде неколлинеарны, приходим к выводу, что в волне существуют две правые ортогональные тройки векторов (E, H, s) и (D, H, N), повернутые на угол a относительно общего вектора H (рис. 2). Таким образом, направление перемещения волнового фронта (вектор N) в кристаллах в общем случае не совпадает с направлением переноса энергии (вектор s). Соответственно различают фазовую скорость V (скорость перемещения фронта) и лучевую скорость u (скорость переноса энергии). Соотношение между фазовой и лучевой скоростями можно получить, рассматривая два положения волнового фронта, соответствующие двум близким моментам времени (рис. 3). Из-за анизотропии среды форма волновой поверхности отлична от сферической (более подробно этот вопрос обсуждается в следующем разделе). Направление фазовой скорости совпадает с направлением волновой нормали N, а направление лучевой – с лучевым вектором s, проведенным от источника О в точку наблюдения. Из рисунка видно, что фазовая скорость равна проекции лучевой на направление волновой нормали: . (5) Различие фазовой и лучевой скоростей является проявлением пространственной дисперсии. Эти скорости отличаются даже для монохроматических волн, а также в отсутствие временной дисперсии n ¹ n(l). Исключая из уравнений (3) напряженность магнитного поля и учитывая соотношения (2) можно получить выражение для скорости волны, распространяющейся в кристалле с главными скоростями Vx > Vy > Vz в направлении вектора N с проекциями (Nx, Ny, Nz), называемое уравнением волновых нормалей Френеля: . (6) Уравнение волновых нормалей может быть преобразовано к квадратному уравнению относительно фазовой скорости V, и, следовательно, имеет два корня. Таким образом, в каждом направлении в кристалле могут распространяться две волны с различными фазовыми скоростями V' и V'' и ортогональными поляризациями D' ^ D''. Каждому вектору D соответствует свой вектор E, повернутый на угол a, а каждому вектору E – ортогональный ему лучевой вектор s (рис. 4). Попадая в кристалл, произвольная световая волна распадается на две ортогонально поляризованные волны с разными скоростями и разными направлениями переноса энергии – возникает двойное лучепреломление. Следует отметить, что в ряде случаев лучевые вектора этих волн могут совпадать (a = 0), например, при распространении волны вдоль любой из главных осей кристалла. При определенном выборе направления распространения, а именно , два решения уравнения Френеля совпадают, т. е. V' = V''. Такие направления (O'O' и O"O" на рис. 5) называются оптическими осями кристалла, а сам кристалл называется двухосным. Если Vx = Vy ¹ Vz, то обе оптические оси сливаются с осью Z. Такой кристалл называется одноосным.
Популярное: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (512)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |