Мегаобучалка Главная | О нас | Обратная связь


Нуклеотидные последовательности в геноме эукариот



2016-09-17 1370 Обсуждений (0)
Нуклеотидные последовательности в геноме эукариот 0.00 из 5.00 0 оценок




Прокариоты. Геном прокариот.

Прокариоты – это организмы, в клетках которых отсутствует оформленное ядро. Его функции выполняет нуклеоид. В отличие от ядра, нуклеоид не имеет собственной оболочки.

Тело прокариот, как правило, состоит из одной клетки. Однако при неполном расхождении делящихся клеток возникают нитчатые, колониальные и полинуклеоидные формы (бактероиды). В прокариотических клетках отсутствуют постоянные двумембранные и одномембранные органоиды: пластиды и митохондрии, эндоплазматическая сеть, аппарат Гольджи и их производные. Их функции выполняют мезосомы – складки плазматической мембраны. В цитоплазме фотоавтотрофных прокариот имеются разнообразные мембранные структуры, на которых протекают реакции фотосинтеза. Иногда их называют бактериальными хроматофорами.

Специфическим веществом клеточной стенки прокариот является муреин, однако у некоторых прокариот муреин отсутствует. Поверх клеточной стенки часто имеется слизистая капсула. Пространство между мембраной и клеточной стенкой служит резервуаром протонов при фотосинтезе и аэробном дыхании.

В отличие от эукариот, геном прокариот построен очень компактно. Количество некодирующих последовательностей нуклеотидов минимально, интроны редки. У прокариот для кодирования белков часто используются две или все три рамки считывания одной и той же последовательности нуклеотидов гена, что повышает кодирующий потенциал их генома без увеличения его размера.

Многие механизмы регуляции экспрессии генов, использующиеся у эукариот, никогда не встречаются у прокариот. Это не относится к вирусам животных и растений, которые, являясь внутриклеточными паразитами эукариотических клеток, используют необходимую часть их генетического потенциала для своих нужд. Простота строения генома прокариот объясняется их упрощенным жизненным циклом, на протяжении которого прокариотические клетки не претерпевают сложных дифференцировок, связанных с глобальным переключением экспрессии одних групп генов на другие, или тонким изменением уровней их экспрессии, что имеет место в онтогенезе эукариот.

Структурные гены подразделяются на три основных типа: независимые гены (транскрибируются без каких-либо механизмов регуляции транскрипционной активности), транскрипционные единицы (транскриптоны – группа следующих друг за другом генов, транскрибируемых совместно, обычно это гены белков или н.к., связанных между собой в функциональном отношении), и опрероны (группа следующих подряд структурных генов, находящихся под контролем участка ДНК - оператора). Кроме того в прокариотической клетке могут находиться более мелкие реплицирующиеся единицы – плазмиды (кольцевые молекулы ДНК, в них есть участки способные к перемещению – транспозоны, они часто содержат гены резистентности к антибиотикам, перемещаясь из одной клетки в другую в процессе коньюгации, гены резистентности быстро распространяются в популяции бактерий).

Количественные особенности генома эукариот

Главная количественная особенность генетического материала эукариот – наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов, а длина кольцевой молекулы ДНК хромосомы составляет свыше 1 мм, то в такой хромо­соме могут разместиться около 3 тысяч генов. Примерно такое число генов было экспериментально определено у бактерий по числу типов иРНК. Если это число умножить на средний размер гена, то получится, что около 95% генома бактерий состоит из кодирующих (генных) последовательностей. Остальные 5%, по-видимому, заняты регуляторными элементами. Иная картина наблюдается у эукариотических организмов. Например, у человека насчитывают приблизительно 50 тысяч генов. Существует значитель­ное число видов, геном которых в десятки раз больше ге­нома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот.

Нуклеотидные последовательности в геноме эукариот

В конце 60-х годов работами американских ученых Р. Бриттена, Э. Дэвидсона и других была открыта фунда­ментальная особенность молекулярной структуры генома эукариот – нуклеотидные последовательности разной степени повторяемости. Различают следующие фракции в геноме эукариот.

1. Уникальные, т.е. последовательности, представ­ленные в одном экземпляре или немногими копиями. Как правило, это цистроны – структурные гены, кодирующие белки.

2. Низкочастотные повторы – последовательности, повторяющиеся десятки раз.

3. Промежуточные, или среднечастотные, повторы – последовательности, повторяющиеся сотни и тысячи раз. К ним относятся гены рРНК, тРНК, гены рибосомных белков и белков-гистонов.

4. Высокочастотные повторы, число которых достигает 10 миллионов (на геном). Это короткие некодирующие последовательности.

Клетки эукариот используют в качестве генетического материала лишь двуцепочечную ДНК. Структурные гены в них подразделяются на независимые гены (их транскрипция не связана с транскрипцией других генов, их активность регулируется, например гормонами), повторяющиеся гены (например, ген рибосомной 5S-РНК повторятся много сотен раз, причем повторы следуют вплотную друг за другом) и кластерные гены (это локализованные в определенных участках – локусах – хромосомы группы различных генов с родственными функциями, иногда также в виде повторов, например, кластер гистоновых генов в геноме человека повторяются 10-20 раз).

Отличительная особенность клеток эукариот состоит в том, что часть генетической информации у них заключена в молекулах, находящихся вне хромосом, локализованных в ядре. Существует два таких типа цитоплазматических ДНК: одни – в митохондриях эукариот, другие – в хлоропластах зеленых растений и водорослей. Как и все цитоплазматические элементы, они наследуются по материнской линии, а не по законам Менделя.

ДНК митохондрий. Это замкнутые кольцевые сверхспиральные дуплексные ДНК (прозрачка). Размер у животных около 20 т.п.н., у дрожжей – 80 т.п.н., у растений – от нескольких сотен до нескольких тысяч т.п.н. Митохондриальная ДНК эволюционирует быстрее, чем ядерная, и мутации в ней происходят почти в десять раз чаще. Рассмотрим на примере митохондриальной ДНК дрожжей. Есть гены, кодирующие белки, гены кодирующие РНК, вставочные последовательности, есть сайты начала репликации, кодирующие субединицы АТФ-азного комплекса.

ДНК хлоропластов сходна с ДНК митохондрий. Эта ДНК – кольцевой дуплекс, содержащий какое-то количество генов, существенных для функционирования и поддержания структуры хлоропластов, и имеет достаточно большую длину – 120-180 т.п.н. в отличие от ДНК митохондрий в пределах вида довольно консервативна.

Гипотеза "Один ген- один фермент"

Впервые представление о взаимосвязи между генами и ферментами точно сформулировали Джордж Бидл и Эдуард Татум в 1941 г. в рамках гипотезы «один ген-один фермент». Бидл и Татум изучали биохимическую роль различных генов в опытах с обычной хлебной плесенью. В норме этот микроскопический гриб может расти на определенной минимальной среде, содержащей сахар, некоторые минеральные соли, источник азота и витамин биотин.

С помощью мутагенеза, индуцируемого рентгеновским излучением, Бидл и Татум получали и затем отбирали мутанты, для роста которых требовалось добавлять в среду некоторые дополнительные питательные вещества.

Для роста первых трех мутантов в минимальной среде требовались добавки n-аминобензойной кислоты, пиридоксина и тиамина соответственно. В каждом из трех случаев наблюдалось блокирование определенного этапа метаболизма, в норме приводящего к образованию соответствующего недостающего питательного вещества. Таким образом, было установлено однозначное соответствие между генетической мутацией и исчезновением определенного фермента, необходимого на данной биохимической стадии метаболизма. Исходя из этого, Бидл и Татум и сформулировали гипотезу «один ген- один фермент»: каждый ген направляет синтез одного фермента. В ходе дальнейших исследований эта гипотеза в несколько модифицированном виде - «один ген -одна полипептидная цепь»-полностью подтвердилась.

Вопрос №4. Классификация генов: гены структурные, регуляторы. Свойства генов (дискретность, стабильность, лабильность, полиаллелизм, специфичность, плейотропия)
Классификация генов предусматривает наличие двух типов генов:

1. Структурные гены.

2. Регуляторные гены.

Оба типа генов транскрибируют различные типы РНК.

Структурные гены- гены, кодирующие синтез белков. Все структурные гены транскрибируют несколько видов РНК – иРНК, тРНК, рРНК и т.д. В зависимости от типа синтезируемых (или транскрибируемых) на них РНК они подразделяются на:

1. Гены, на которых синтезируется иРНК. Таких генов около 30 тысяч. Именно эти гены несут информацию о последовательности аминокислот в полипептиде. Многие из них уникальные. Однако есть гены имеющие копии. Как правило, число копий не превышает двух.

2. Гены, с которых транскрибируется тРНК. Эти гены не несут информацию о структуре белка. Их функция заключается в синтезе достаточного количества тРНК способных обеспечить транспорт аминокислот в рибосомы для синтеза белка. Число индивидуальных тРНК – около 50. Столько же и типов генов, кодирующих тРНК. Однако, общее число генов тРНК значительно больше. Это связано с тем, что каждый ген, кодирующий тРНК, представлен не в одном экземпляре, а повторяется множество число раз.

3. Гены, с которых транскрибируются рРНК. Эти гены, также как и предыдущие, не кодируют структуру полипептида, а синтезируют несколько разновидностей РНК (на генах эукариот синтезируется три разновидности РНК). Однако число генов, кодирующих рРНК, намного больше трёх. Как и в предыдущем случае, это связано с высокой повторяемостью каждого типа гена.

Все три типа гена объединяет одно – все они являются активными участниками синтеза белка. В настоящее время в геноме человека насчитывается примерно 30 тысяч структурных генов. Длина всей ДНК в клетке человека примерно 1,5 метра, ДНК всех генов в ней занимает всего 3 - 10 % .

Регуляторные гены-координируют активность структурных генов на уровне клетки, а также дерепрессию и репрессию генов на уровне организма. Наряду с регуляторными генами, имеются регуляторные последовательности, функция которых выявляется во взаимодействии со специфическими белками.

Свойства генов.

Дискретность — несмешиваемость генов; Ген дискретен в своем действии, т. е. обособлен в своей активности от других генов.

Стабильность — способность сохранять структуру; Гены- относительно устойчивая форма.

Лабильность — способность многократно мутировать;В основе этого свойства лежит способность гена к изменениям с возникновением новых аллельных генов и их новых сочетаний.

Множественный аллелизм — многие гены существуют в популяции во множестве молекулярных форм; При множественном аллелизме выделяют больше двух аллелей, например, в наследовании группы крови участвует три (IA, IB, I0). Диплоидный организм имеет два таких аллеля (один от папы, другой от мамы) в разных сочетаниях.

Аллельность — в генотипе диплоидных организмов только две формы гена;Аллель – одна из форм одного и того же гена, определяет один из вариантов развития признака. Обычно выделяют два аллеля: доминантный (соответствует нормальному гену) и рецессивный (объединяет в себя множество различных мутаций данного гена, приводящих к тому, что ген не работает). Организм, у которого аллельные гены одинаковы, называется гомозиготным (по данному признаку). Если аллельные гены разные – гетерозиготным. В гетерозиготе доминантный признак проявляется в фенотипе, а рецессивный – скрывается.

Специфичность— каждый ген кодирует свой признак; Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.

Плейотропия — множественный эффект гена; Один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена .

Экспрессивность — степень выраженности гена в признаке (степень фенотипического проявления аллеля). Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность.

Пенетрантность — частота проявления гена в фенотипе; Вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

Амплификация — увеличение количества копий гена. При этом крайне необычном процессе происходят серьёзные нарушения нормального процесса репликации ДНК. В результате вместо одной копии определённого участка хромосомы образуется множество копий. Это, в свою очередь, приводит к образованию множества копий генов, которые расположены в этом районе хромосомы.

 

Список используемой литературы

1. Медицинская генетика / Под ред. Бочкова Н.П. - М.: Мастерство, 2001.

2. Ярыгин В.Н., Волков И.Н. и др. Биология. - М.: Владос, 2001.

3. Биология / Под ред. Чебышева. Н.В. - М.: ГОУ ВУНМЦ, 2005.

4. Орехова. В.А., Лажковская Т.А., Шейбак М.П. Медицинская генетика. - Минск: Высшая школа, 1999.

5. Уотсон Д. Д., Молекулярная биология гена, пер. с англ., М., 1978. © П. Л. Иванов.



2016-09-17 1370 Обсуждений (0)
Нуклеотидные последовательности в геноме эукариот 0.00 из 5.00 0 оценок









Обсуждение в статье: Нуклеотидные последовательности в геноме эукариот

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1370)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)