Мегаобучалка Главная | О нас | Обратная связь


Теоретические сведения. Геометрическая оптика основывается на том, что свет распространяется прямолинейно



2016-09-17 406 Обсуждений (0)
Теоретические сведения. Геометрическая оптика основывается на том, что свет распространяется прямолинейно 0.00 из 5.00 0 оценок




 

Геометрическая оптика основывается на том, что свет распространяется прямолинейно. Но опыт показывает, что при некоторых условиях световые лучи отклоняются от прямолинейного пути распространения в однородной среде. Это явление носит название дифракции световых лучей (волн).

Далее дифрагирующие лучи интерферируют и происходит перераспределение энергии волн в пространстве. На экране мы можем увидеть чередующиеся светлые и темные участки.

Если свет монохроматический (частоты всех лучей одинаковы), то светлые участки имеют цвет, соответствующий частоте интерферирующих лучей.

Если же свет белый, то светлые участки окрашены в цвета радуги. Явление интерференции возможно лишь для когерентных лучей, т.е. таких лучей, разность фаз которых не меняется со временем.

В данной работе для получения монохроматических, когерентных лучей используют лазер.

Лазеры – это приборы, использующие вынужденное излучение для усиления электромагнитных волн в оптическом диапазоне.

Если на вещество падает свет частотой w,которая совпадает с одной из частот атома вещества , то может происходить два процесса:

1. Переход атома из состояния с энергией в состояние с энергией, при этом происходит поглощение света и ослабление падающего пучка;

2. Вынужденный переход атомов из состояния n в состояние mсопровождается увеличением интенсивности падающего пучка.

 

 

В случае термодинамического равновесия распределение атомов по различным энергетическим состояниям определяется законом Больцмана:

 

 

где Ni-число атомов, находящихся при температуре T в состоянии с энергией Ei; c- константа.

Из уравнения видно, что с увеличением энергии состояния населенность уровня, т.е. количество атомов в данном состоянии, уменьшается. Число переходов между уровнями пропорционально населенности исходного уровня. Следовательно, в системе атомов, находящихся в термодинамическом равновесии. Поглощение падающей световой волны будет преобладать над вынужденным излучением, так что падающая волна при прохождении через вещество ослабляется.

Для того, чтобы получить усиление падающей волны, нужно каким-либо способом обратить населенность энергетических уровней, т.е. сделать так, чтобы в состоянии с большей энергией En находилось большее число атомов. Чем в состоянии с меньшей энергией Em.

В этом случае говорят, что данная совокупность атомов имеет инверсную населенность.

В первом лазере рабочим телом был цилиндр из розового рубина диаметром 1 см и длиной 5 см. Рубин представляет собой окись алюминия Al2 O3 , в которой некоторые из атомов алюминия замещены атомами хрома.

 

 

При поглощении света ионы хрома Cr+++ переходят в возбужденное состояние E3 (рис. 1).

 
 

Рис.1

Обратный переход в основное состояние E1 происходит в два этапа. На первом этапе возбужденные ионы отдают часть своей энергии кристаллической решетке и переходят в метастабильное состояние E2 . Переход из метастабильного состояния в основное запрещен правилами отбора. Поэтому среднее время жизни иона в метастабильном состоянии (~ 10-3 c ) примерно 105 раз превосходит время жизни в обычном возбужденном состоянии E3 (~ 10-8 с ).

На втором этапе ионы из метастабильного состояния переходят в основное. Излучая фотон с длиной волны l = 632,8 нм.

 
 

Таким образом, если непрерывно возбуждать (освещать) рубин, то на метастабильном уровне Е2 будет большая населенность, чем на уровне Е3 . Можно не дожидаться спонтанного (самопроизвольного) перехода иона из метастабильного состояния в основное. Для этого достаточно облучить рубин светом резонансной частоты, т.е длиной волны λ=692,8 нм, и произойдет вынужденное излучение. В лазере рубин освещается импульсной ксеноновой лампой, которая дает свет с широкой частотой (рис.8 ).

 

Рис.8

 

При достаточной мощности лампы большинство ионов хрома переводится в возбужденное состояние. Процесс сообщения рабочему телу лазера энергии для перехода атомов в возбужденное состояние является подкачкой.

В течение времени ~ 10-8 (время жизни иона на уровне Е3 ) некоторые ионы спонтанно перейдут в основное состояние, а большинство – на метастабильный уровень Е2 . И может оказаться, что число ионов хрома, находящихся на уровне Е2 , будет больше числа ионов хрома на уровне Е1 . Достаточно одному иону спонтанно перейти с метастабильного уровня на основной, чтобы излученный при этом фотон мог вызвать вынужденное (резонансное) испускание дополнительных фотонов, которые в свою очередь вызовут вынужденное излучение.

Для увеличения КПД первых фотонов торцы рубинового стержня тщательно полируются и образуют строго параллельные друг другу зеркала. Один конец покрывается плотным непрозрачным слоем серебра, а другой – таким слоем серебра, который пропускает около 8 % упавшей на него энергии. Все это ведет к многократному отражению первых фотонов и их лавинообразному нарастанию. Через полупрозрачное зеркало (торец) вспышка вынужденного излучения выводится наружу. После этого весь процесс повторяется снова. Таким образом, рубиновый лазер работает в импульсном режиме (с частотой повторения несколько импульсов в минуту).

В 1961 г. был создан газовый лазер, работающий на смеси гелия и неона. Подкачка в нем осуществляется за счет за счет электрического тлеющего разряда. Разрядная трубка заполняется смесью гелия под давлением 133 Па и неона под давлением 23,3 Па. На концах трубки имеет плоскополяризованные зеркала, одно из которых полупрозрачное. Разряд возбуждает атомы гелия, переводя их на метастабильный уровень 23 S (рис.9)

 

 

 
 

Рис.9

 

Возбужденные атомы гелия сталкиваются с атомами неона, находящимися в основном состоянии, и передают им свою энергию. В результате атомы неона переходят на уровень 2S , вследствие чего возникает инверсная населенность уровней 2S и 2Р. Переход 2S® 2Р дает излучение лазера. Из-за быстрых переходов атомов неона с уровня 2Р на уровень 1S не происходит накопления атомов в состоянии 2Р.

Газовые лазеры работают в непрерывном режиме и не нуждаются в интенсивном охлаждении, ибо они имеют малую мощность (импульсная мощность рубинового лазера до 40 кВт). Газовые лазеры имеют большую стабильность частоты (монохроматичность и когерентность излучения), чем рубиновые.

Устройство гелий-неонового лазера показано на рис.10.

 
 

Рис.10

 

Где 1 – разрядня трубка; 2 – прозрачные пластины под углом Брюстера к оси трубки для поляризации лучей, чтобы избежать потери на отражение; 3 – анод; 4 – катод; 5 - плоское полупрозрачное зеркало; 6 – сферическое зеркало.

Плоское полупрозрачное и сферическое зеркала образуют резонатор, настроенный на частоту лазерного излучения. Это дает возможность повысить КПД первых фотонов, а также повысить коллимацию (направленность) лазерного излучения. Расхождение лучей газового лазера менее 0,010 (у рубинового около 0,050 ÷ 0,010 ).

Перейдем к рассмотрению дифракционной решетки.

 
 

Нанеся на прозрачную пластинку систему параллельных, равномерно расположенных штрихов, получим спектральный прибор, называемый дифракционной решеткой (рис.11).

Рис.11.

Где – b – ширина штриха; a– прозрачная часть – щель; d = a + b - постоянная дифракционной решетки. Она указывается на дифракционной решетке.

Действие дифракционной решетки сводится к интерференции многих когерентных колебаний. Оптическая разность хода лучей 1 и 2 от соседних щелей равна

или .

Из теории интерференции известно, что если , то наблюдается максимальная интенсивность света.

Значит, для дифракционной решетки имеем следующие условия:

Для max : ,

Для min : .

Общая дифракционная картина, получаемая от решетки, имеет такой же вид, как и от одной щели, но число максимумов меньше, расположены они дальше друг от друга и сами максимумы шире, чем максимумы соответствующего порядка от одной щели.

Если на дифракционную решетку падает немонохроматический свет, то в местах максимумов будут наблюдаться спектры, которые существенно отличаются от спектров дисперсии. Это различие вытекает из самого характера явлений дисперсии и дифракции.

 



2016-09-17 406 Обсуждений (0)
Теоретические сведения. Геометрическая оптика основывается на том, что свет распространяется прямолинейно 0.00 из 5.00 0 оценок









Обсуждение в статье: Теоретические сведения. Геометрическая оптика основывается на том, что свет распространяется прямолинейно

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (406)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)