Мегаобучалка Главная | О нас | Обратная связь


Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков



2019-05-24 194 Обсуждений (0)
Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков 0.00 из 5.00 0 оценок




 

Палеогидрология

Только на территории Горного Алтая общая площадь ледниково-подпрудных озер, подсчитанная по высотному положению сохранившихся береговых линий, спиллвеев и кровле озерных отложений, составляла в позднем плейстоцене не менее 27 тыс. км2, а суммарный объем достигал 7, 3 тыс. км3. В целом же в горах Южной Сибири по предварительным оценкам эти параметры составляли, соответственно, 100 тыс. км2 и 60 тыс. км3.

Самыми крупными ледниково-подпрудными озерами из изученных были Чуйское и Курайское, которые на определенном этапе их эволюции, на стадиях деградации последнего оледенения, представляли собой единый Чуйско-Курайский ледниково-подпрудный водоем. Обнаруженные во время полевых работ 1984 г. на абсолютных отметках свыше 2400 м новые перевалы-спиллвеи из Курайской котловины в бассейн р. Чаган-Узуна и из Чуйской – в бассейн р. Башкауса, а также комплекс дилювиальных валов на перевале Кызыл-Джалык – Кызыл-Чин и Кызкынор, показали, что рекордные объемы Чуйско-Курайской системы ледниково-подпрудных озер могли достигать 3500 км3, т.е. были гораздо больше максимальных объемов оз. Миссула.

Характерные для горных систем Центральной Азии большие межгорные котловины, окруженные высокими хребтами, несущими мощное оледенение, в ледниковое время представляли собой систему сообщающихся водоприемников, сток из которых осуществлялся по крупнейшим дренажным системам, на Алтае – по долинам Чуи, Чулышмана, Башкауса, Катуни, Бии, и, вероятно, Джасатера-Аргута. Это установлено по комплексу дилювиальных образований в этих долинах, но главным образом – по местонахождениям рельефа гигантских знаков ряби течения.

В случае повышенной мощности ледниковых плотин в каналах стока регулирование запасов воды в водоприемниках происходило путем частичной водоотдачи через дренажные каналы низших порядков – перевальные седловины в соседние бассейны. Сброс части вод через спиллвеи Тобожок-Башкаус должен был вызывать катастрофическое опорожнение ледниково-подпрудных озер в долинах рр. Башкауса, Улаганов и Кубадру. Прорывы Чуйского, Курайского или Уймонских озер провоцировали сбросы воды из Яломанской впадины. Эта озерно-дренажная сеть была чрезвычайно динамичной. Каждый очередной сброс или всех озерных вод, или их излишков немедленно компенсировался интенсивным талым стоком с ледников горного обрамления.

Короткопериодические опорожнения и заполнения котловин накладывались на озерно-ледниковые макроритмы длительностью в десятки тысяч лет, на всех этапах эволюции озер за исключением тех промежутков времени, когда поверхность озер вовлекалась в область питания ледников и возникали наледные ледоемы и «пойманные озера». На начальных и конечных стадиях оледенений, когда ледниковые плотины были маломощными и неустойчивыми, опорожнения происходили за счет прорывов или всплывания плотин. В остальных случаях излишки воды сбрасывались через спиллвеи, а также поверх плотин, которые в итоге опять-таки прорывались.

В магистральных долинах стока из некоторых котловин имеются фрагменты отложений подпруживавших озера ледников. Эти морены приурочены к створам участков прорыва на разных гипсометрических уровнях каналов при выходе из котловин. Фрагменты морен встречаются и на бортах каналов стока ниже участков прорыва. Такие образования специально изучались автором в долине Чуи между Чуйской и Курайской впадинами, ниже Курайской впадины, на склонах в урочище Баротал, в долине р. Катуни ниже урочища Сок-Ярык, в долине р. Чулышмана, в долине р. Ванча в Горном Бадахшане и в других местах. В.В. Бутвиловский и Г.Г. Русанов изучали эти образования в бассейне р. Башкауса, а М.Г. Гросвальд – в большинстве ледниковых районов мира.

Противники теории дилювиального морфолитогенеза утверждают, что если бы ледниково-подпрудные озера сбрасывались катастрофически, то дилювиальные потоки эродировали бы весь рыхлый материал в нижележащих долинах.

Во-первых, иной, не катастрофический, сценарий разгрузки ледниково-подпрудных озер в настоящее время неизвестен. Во-вторых, многочисленные современные примеры в самых разных районах планеты показывают, что ледниково-подпрудные озера способны продуцировать катастрофические паводки и без полного уничтожения подпруживающих ледников и их фронтальных морен.

Очевидно, что и сбросы Чуйского, Курайского, Уймонского и других озер в направлении магистральных долин на стадиях последней дегляциации, когда озера уже не достигали максимальных объемов в связи с уменьшением талого стока и маломощностью плотин, происходили главным образом по внутри- и окололедниковым каналам и полостям, а также – по подледниковым спиллвеям. Полного уничтожения плотин на этих этапах не происходило.

Таким образом, например, было спущено в сентябре 1982 г. оз. Стрэндлайн на Аляске. Это озеро имело объем 7 ´ 108 м3. Скорости дилювиального потока были оценены авторами статьи в 14 м/с. После катастрофического сброса озера, которых длился 5 часов, внутриледниковые каналы стока оставались открытыми еще около года, после чего закрылись.

У. Мэтьюз сообщает о механизме катастрофического прорыва ледниково-подпрудного оз. Саммит в декабре 1965 г.. Это озеро было спущено по внутриледниковому туннелю правильно формы с максимальным диаметром 13,1 м и длиной почти 13 км. Максимальный расход воды составлял 3200 м3/с.

Ярким примером обсуждаемого механизма катастрофических сбросов ледниково-подпрудных озер является долина р. Ванч на Памире. Верховья этой долины буквально завалены протаивающим моренным материалом – реликтом многочисленных подвижек ледника Медвежий. В 3 – 4 км от устья р. Дустироз вниз по р. Ванч долину почти перегораживает хорошо сохранившийся конечно-моренный комплекс ледника Русского географического общества. Этот комплекс представляет собой, по существу, активный каменный глетчер, под моренным чехлом которого залегает интенсивно убывающий ледниковый лед. А ведь только в течение 20-го столетия Абдукагорское озеро прорывало ледниковую плотину не менее шести раз: в 1910, 1937, 1951, 1963, 1973 и в 1985 годах. Зато еще ниже ледника РГО по течению Ванча долина в прирусловой части оказалась практически полностью вычищена гляциальными прорывными паводками, которые генерировало Абдукагорское ледниково-подпрудное озеро. Здесь можно встретить почти весь известный геоморфологический набор следов дилювиальных потоков: подрезанные конусы выноса, выположенное днище самой долины, покрытое огромными, в несколько метров в диаметре, глыбами, маргинальные каналы дилювиальных стоков по коренным бортам долины, эворзионные впадины «сухих водопадов» и т.п.

При кульминации оледенений механизм подледниковых катастрофических сбросов озер становился, по-видимому, превалирующим, хотя сами сбросы происходили реже. В частности дилювиальные каналы сбросов и геоморфологические следы работы напорных подледниковых вод под позднеплейстоценовой ледниковой лопастью описываются для Южного Онтарио, провинций Альберта, Квебек и северо-западных территорий современной Канады. Формирование отдельных форм рельефа, происхождение которых связывалось ранее с приледниковым морфогенезом, Т. Бреннард и Дж. Шоу объясняют напряженными водно-эрозионными динамическими обстановками под ледниковыми щитами.

Сейчас разработаны математические модели нескольких механизмов истечения воды из ледниково-подпрудных озер и внутриледниковых полостей, рассматривающий широкий их спектр от медленного просачивания воды через трещины во льду и термоэрозии с дальнейшим прорывом до катастрофических взламываний, прорывов льда. С палеогляциологических позиций важно то, что приледниковые и внутриледниковые озера способны продуцировать катастрофические паводки без полного уничтожения подпруживающего ледника. С геоморфологических позиций важно то, что наличие моренного материала в каналах стока не опровергает вероятность катастрофических опорожнений озер.

Несколько лет назад, когда рельеф гигантской ряби течения в горах Южной Сибири уже многие исследователи перестали, наконец, именовать мореной и т.п., то есть когда гигантская рябь течения получила свое верное, дилювиальное, объяснение, некоторое недоумение естествоиспытателей вызывала необычная ориентировка гигантских дилювиальных гряд в Курайской межгорной впадине. Согласно этой ориентировке, направление четвертичных дилювиальных потоков из котловины было обратным современному направлению р. Чуи. Другими словами, огромные массы воды, как и писали об этом Г.Ф. Лунгерсгаузен и О.А. Раковец, изливались в сторону Монголии.

Палеогляциологические реконструкции П.А. Окишева, основанные на том, что последнее оледенение в горах Алтая возникло и существовало вследствие понижения среднелетних температур воздуха относительно современных примерно на 5° без увеличения относительно современного среднегодового количества осадков, показали, что талый сток с ледников Алтая был в 10 раз меньше современного, т.е. был настолько ничтожен, что поглощался «каналами и трещинами ледника, занимавшего долину Чуи» в максимум оледенения и не «обеспечивал» образования озера в Курайской, в частности, котловине. Другими словами, ледники как губка впитывали ту малую воду, которая была, и котловины с подпруженным ледниками же стоком оставались сухими.

Для оценки талого стока в максимум и постмаксимум последнего оледенения в бассейне крупнейшей на Алтае Чуйской котловины мы использовали данные самого П.А. Окишева о градиенте температур в эти периоды и предлагаемые им же величины депрессии снеговой линии. В разработке модели учитывались рекомендации М.Б. Дюргерова, В.Г. Ходакова и А.Н. Кренке. Погрешность полученных результатов, по-видимому, не превысила ошибки определения границ четвертичных ледников.

Наши расчеты показали, что объем современного ледникового стока в бассейне верхней Чуи составляет около 0,3 км3/год. В первую фазу позднечетвертичного оледенения он составлял в среднем около 8,5 км3/год. Это означает, что в ледниковый максимум вюрма, если принимать исходные данные П.А. Окишева, объем талого стока с ледников Алтая мог быть почти в 30 раз больше современного.

Отмечу при этом, что, во-первых, для расчетов принималась величина депрессии границы питания как минимум на 400 м меньшая, чем действительная для указанных хронологических срезов; во-вторых, отклонения среднелетних температур воздуха на эти временные интервалы по некоторым данным были гораздо больше. Наконец, в-третьих, утверждение П.А. Окишева о неизменности, или даже – аридности, климата в ледниковые эпохи на территории гор Центральной Азии представляется совсем не бесспорным.

Работы Е.В. Девяткина, В.Э. Мурзаевой, А.А. Свиточа, Е.М. Малаевой и многих других геологов содержат очень серьезные доказательства синхронности плювиальных обстановок с похолоданиями с одной стороны, и глубокой аридизацией климата Центральной Азии в межледниковья с другой.

«Именно после оледенения до крайности усилился аридный режим Центральной Азии…», писал еще в 1949 г. Э.М. Мурзаев. На основании геоморфологических данных этот великий знаток Азии отмечал «несомненно более влажный, нежели современный, климат ледникового времени. Наши материалы по «сухим долинам» северо-восточного склона хр. Сайлюгем подтверждают выводы перечисленных исследователей о гораздо большей увлажненности климата в эпоху по крайней мере последнего оледенения и о постледниковой, резко проявившейся в раннем голоцене, аридизации.

Поэтому можно полагать, что объем талого стока в бассейне верхней Чуи был еще больше, чем полученный по нашим расчетам из данных П.А. Окишева. Так или иначе, даже опираясь на приведенные, явно заниженные, оценки объема ледникового стока, легко подсчитать, что для заполнения Чуйской котловины до горизонтали 2200 м потребовалось бы, исходя из объема котловины, порядка всего ста лет. Курайская котловина должна была заполняться до этих отметок как минимум втрое быстрее. Поэтому до выравнивания уровней Курайского и Чуйского ледниково-подпрудных озер сток воды должен был быть направлен на восток, в бассейн заполнявшегося Чуйского озера.

Возможен еще один сценарий палеогидрологических событий, способный удовлетворительно объяснить «странную» ориентировку гигантской ряби в Курайской впадине. При изменении плановой конфигурации речного русла гидродинамический режим меняется, меняется и характер донной и боковой эрозии и прибрежной и иной аккумуляции наносов. Это контролируется дифференциацией скоростей течения на разных участках русла и изменением характера продольной и поперечной циркуляции воды в нем. В некоторых местах возникают зоны энергичных локальных водоворотов, а также более обширные пространства с обратными течениями. Именно на таких участках обратных течений, как показывают экспериментальные и натурные материалы, возникают грядовые русловые формы, не фиксирующие, кстати, – и это очень важно, участки максимальных скоростей и глубин основного потока.

В случае с Курайской впадиной палеогидрологическая ситуация, в частности могла выглядеть так, как показано на схеме. Можно добавить, что предложенное объяснение не является откровением для специалистов по русловым процессам, но может оказаться небезынтересным для специалистов в области динамической геологии и геоморфологии. Разумеется, оба сценария не исключают друг друга.

Реконструированный в Курайской впадине циклональный круговорот воды, имевший почти 10-километровый радиус, вместе с основным, продольным палеотечением мог бы служить зеркальной моделью современной циркуляции Арктического бассейна.

Гигантские знаки ряби течения, развитые в верхних истоках Енисея, позволяют наметить дилювиальную палеогляциогидрологию этой территории. Как видно из палеогляциологической схемы М.Г. Гросвальда, поля гигантской ряби расположены повсеместно по берегам Ка-Хема – Улуг-Хема. Образование этой ряби М.Г. Гросвальд связывает с катастрофическими прорывами Дархатского ледниково-подпрудного озера во время распада последнего оледенения.

Дархатская межгорная впадина ограничена с запада, севера и востока горными хребтами с абсолютными высотами около 3000 м, а на юге отделена от бассейна Мурэна водораздельной грядой с отметками около 2000 при высоте днища котловины – 1570 м. Абсолютная отметка уреза р. Кызыл-Хема у выхода из котловины – 1543 м. А.И. Спиркин, много работавший в бассейне Дархатской котловины, доказал неоднократное возникновение в котловине плотинных озер. Большинство плотин Дархатского озера были вулканического происхождения, следы последнего же озера указывают на его ледниково-подпрудный генезис. С выводами А.И. Спиркина согласились М.Г. Гросвальд и Н.В. Лукина.

Максимальная площадь Дархатского ледниково-подпрудного озера, восстановленная по гипсометрии озерных террас, составляла в последнюю ледниковую эпоху около 2600 км2, а объем воды превышал 250 км3. На основании сравнения величин испарения и средних годовых сумм атмосферных осадков в бассейне Дархатской впадины и современном речном бассейне, М.Г. Гросвальд делает вывод о том, что время, необходимое для заполнения озерной ванны до отметки 1720 м, составляло около 100 лет. После этого озеро прорывалось.

Этот сценарий очень похож на реконструированную поздневюрмскую историю алтайских ледниково-подпрудных озер. Даже порядок величин скорости заполнения межгорных впадин талыми водами одинаков – около ста лет. Можно предполагать, что этот порядок справедлив и для других ледниково-подпрудных озер Центральной Азии, если иметь в виду сходные климатические условия их питания и режима.

Систематические дилювиальные потоки из Дархатской впадины создали каньоны-кули в истоках Енисея, а также гигантские знаки ряби течения рр. Кызыл-Хема и Ка-Хема – Улуг-Хема. Кроме этого, согласно нашим наблюдениям, именно в результате работы дилювиальных потоков днища многих тувинских котловин почти полностью лишены обломочного рыхлого чехла. Обширный участок долины Енисея в районе Кызыла-Шагонара имеет лишенные рыхлых отложений склоны, и часто вычищенные от рыхлых осадков верхние террасовые цокольные уровни. Отложения гигантской ряби района Кызыла залегают, вероятно, на среднечетвертичном цоколе, который повсеместно обнажается рекой.

Как отмечалось, четвертичная гляциогидрология Саяно-Тувинского нагорья изучена лишь в самых общих чертах благодаря, в первую очередь, трудам М.Г. Гросвальда. Представляется удивительным пробелом то, что известная более двадцати лет тувинская гигантская рябь специально никем не изучалась, хотя даже по описанным местонахождениям можно судить о том, что по представительности она ничем не уступает алтайской и американской. Более того, если исходить из общей палеогляциологической ситуации территории нагорья и прилегающих прибайкальских регионов, ледниково-подпрудные озера существовали здесь повсеместно, и гигантская рябь течения может быть обнаружена во многих долинах. Нужно лишь представлять, что именно необходимо искать.

Расчеты гидравлических параметров дилювиальных потоков по морфометрии и вещественному составу гигантских знаков ряби и по топографии каналов стока

Первые определения расходов дилювиальных потоков позднечетвертичного североамериканского озера Миссула для различных участков производились по известной в гидрологии формуле Шези. Полученные результаты были грандиозны: от 2 до 10 млн. м3/с. Тем не менее, неопределенность коэффициента шероховатости русла приводила к значительным неточностям, а сами результаты казались многим сомнительными. Позднее В.Р. Бейкер на основании статистического анализа большого количества натурных данных вывел эмпирические зависимости между размерами гряд ряби течения и глубиной и скоростью потоков, в руслах которых эти гряды формировались:

 

Н = 0.923V 0.455; B = 37.8V 0.348 и B = 8.24D 0.87,

 

где Н – средняя высота волны ряби, В-средняя длина волны, D – глубина потока над полем ряби и V – средняя скорость течения воды.

В.Р. Бейкер определил и диапазон условий, в пределах которых справедливы эти взаимоотношения: глубина потока от 12 до 152 м, средняя скорость течения 9 – 18 м/с, крупность частиц, слагающих паводковые дюны – от гравия до валунов диаметров до 1.5 м и некоторые другие. Согласно зависимостям В.Р. Бейкера, для участка гигантской ряби Платово-Подгорное на 12 – 14-метровой левобережной террасе р. Катунь в предгорьях Алтая были получены средние скорости потока около 16 м/с, глубины потока около 60 м и расходы воды, с учетом современной морфологии долины, не менее 600 000 м3/с. Эти цифры несколько превышают ранее опубликованные в связи с уточнением морфометрии грядового рельефа методом крупномасштабной топографической съемки.

Участок Платово-Подгорное находится почти в 300 км от возможных мест прорыва. Поток здесь распластывался, его глубины и скорости падали. В горах скорости и глубины фладстримов были гораздо больше. Для поля дилювиальных дюн и антидюн на участке рр. Малый Яломан – Иня в Центральном Алтае, согласно зависимостям В.Р. Бейкера, были получены глубины потока более 400 м и скорости – около 30 м/с, а расходы, соответственно, – более 1 млн. м3/с. Полученные величины, как видим, не удовлетворяют условиям, для которых справедливы формулы В.Р. Бейкера, и требуют иных, независимых, подтверждений.

По расчетам П.Э. Карлинга, автора первых специальных работ по флювиальной геоморфологии и седиментологии грядового дилювиального рельефа на Алтае, обычные расходы дилювиальных потоков над местами образования ряби в Горном Алтае к моменту стабилизации фладстримов варьировали в интервале от 2×104 м3/с до 5×104 м3/с с максимумом на пике паводка в 750 000 м3/с. Максимальные глубины потока достигали 50 метров. Эти данные основаны на результатах компьютерной обработки множественных гранулометрических проб и крупномасштабной топографической съемки, произведенной на участках Платово – Подгорное, Малый Яломан – Иня и на полях развития рельефа гигантской ряби в Курайской впадине.

Недавно П.Э. Карлинг совместно с американскими планетологами обнаружил и предварительно проанализировал первое для Марса поле гигантских знаков ряби течения в системе каналов Атабска на Плато Цербера. Анализ марсианской гигантской ряби основывался на сравнении последней с курайской рябью на Алтае. В плане дилювиальные дюны и антидюны Атабаска напоминают барханоиды. Высота волны колеблется около 3,5 м при максимуме в около 5 м; длина волны достигает 130 м. Такая рябь, полагают авторы, откладывалась в русле потока с числом Фруда от 0, 5 до 0, 84 и с расходами около 2 ´ 106 м3/ с.

Как видим, расчеты П.Э. Карлинга не противоречат данным, полученным по формулам В.Р. Бейкера, хотя сам ход экспериментальных и аналитических работ, несомненно, более сложен. Следует еще раз подчеркнуть, что гидравлические параметры дилювиальных потоков над полями гигантских знаков ряби, в особенности – в зонах обратных течений, не отражают максимальные характеристики потока на стрежне, где скорости и глубины воды были гораздо больше.

Для оценки расходов дилювиальных потоков при прорывах приледниковых озер часто применяют эмпирические формулы Дж. Клейга и У. Мэтьюза, Дж. Бегета и Дж. Коста, в которых предполагается прямая связь между объемами сброшенных озер и расходами йокульлаупов на створах прорыва ледниковых плотин:

 

Qmax = 0.0075 V 0.667;

Qmax = 0.0065 V 0.69;

Qmax = 0.0113 V 0.06,

 

где Qmax – максимальные расходы йокульлаупов, а V – объем озера. Согласно этим формулам, плейстоценовая система Чуйско-Курайских ледниково-подпрудных озер продуцировала йокульлаупы с расходами от 4 до 9 × 105 м3/с.

В настоящее время предпочтение отдается формуле, как более точной. В основе этой модели лежит уравнение регрессии, выведенное по результатам наблюдений десяти прорывов современных ледниково-подпрудных озер. Недостаток этой модели для целей четвертичной гляциогидрологии заключается в том, что: 1) она не учитывает топографию каналов прорыва и уже на некотором удалении от озерной ванны вниз по долине стока сильно занижает значение расходов воды; 2) зависимость выведена эмпирическим путем для современных приледниковых озер, размеры которых по крайней мере на два порядка меньше четвертичных. Тем не менее, при невозможности прямых измерений в дилювиальных потоках, я исхожу из того, что перечисленные зависимости представляют сходимые результаты, и на них можно ориентироваться при отсутствии альтернативных методов палеогидравлических расчетов.

По материалам полевых и картографических работ Алтайской российско-американской экспедиции 1991 г. были выполнены вычисления расходов дилювиальных потоков при прорыве всей Чуйско-Курайской системы четвертичных ледниково-продпрудных озер. В гидрологических расчетах профилей водной поверхности использовалась компьютерная программа НЕС-2. Ход вычислений основывался на решении уравнения удельной энергии, выведенного из уравнения Бернулли для установившегося, плавно изменяющегося течения. Основанием для вычислений были 17 поперечных профилей через долину р. Чуи, выбранных на участке длиной около 18 км приблизительно между «Золотаревской будкой» и пос. Чибит по «новой долине Чуи». Детальные геометрические данные канала стока по семи профилям были получены из топографических карт масштаба 1: 25 000.

Вычисленный нами максимальный расход для Чуйско-Курайского йокульлаупа оказался равен 18 × 106 м3/с. Эта оценка превышает таковую для максимального расхода дилювиального потока из озера Миссула, который был оценен в 17 × 106 м3/с. Сравнение расходов центрально-азиатских и североамериканских гляциальных суперпаводков представляется вполне корректным, так как для обоих регионов задача решалась по единой методике, а в полевых экспериментах участвовали одни и те же специалисты.

Материалы детальных полевых работ немецких исследователей в целом подтверждают наши данные. При своих вычислениях эти специалисты приняли объем Чуйско-Курайской озерной системы всего в 607 км3 и исходили при этом из абсолютных отметок береговых линий Чуйского и Курайского ледниково-подпрудных озер в 2100 м. Я оценил высоту озерных террас в 2200 м. Эта оценка производилась по привязке точек береговых линий на аэрофотоснимках и соответствующих точек на крупномасштабных картах. При этом суммарный объем воды должен был достигать не менее 1000 км3. Максимальные же объемы рассчитывались, как сказано, в первую очередь по абсолютным отметкам спиллвеев. Тем не менее, и при минимальных объемах озер Ю. Хергет с коллегами получили очень представительные результаты.

Они проанализировали 85-километровый участок долины р. Чуи до устья. Основанием для вычислений были 244 поперечных профиля, снятые с крупномасштабной топографической карты и с помощью GPS-системы на местности. Высоты поверхностей потоков принимались исходя из отметок береговых дилювиальных валов. Для обработки результатов была использована программа HEC-RAC – Hydrologic Engineering Center of the US Army Corps of Engineers – River Analysis System. По всем профилям были получены расходы потоков в интервале 8 ´ 106 м3/с – 12 ´ 106 м3/с. Глубины потоков варьировали от 280 до 400 м, а средние скорости течения на разных створах были 9 – 37 м/с. Число Фруда колебалось в соответствие с энергией потока от 0, 20 до 0, 85. Пик гидрографа стока на субкритическом участке показал расход воды в 20,5 ´ 106м3/с при скорости 72 м/с, что превышает и данные наших расчетов для Чуйско-Курайской системы озер, и данные для оз. Миссула.

Наличие потоков с такими расходами, предполагающими катастрофический прорыв, разламывание ледниковых плотин, не препятствует сценарию множественных фладстримов с расходами порядка 1 млн. м3/с, и связанных с повторяющимися заполнениями и опорожнениями ледниково-подпрудных озер. Более того, такие регулярные, «заурядные», потоки, которые все же были очень велики, могли оказывать на земную поверхность более сильное влияние благодаря не столько своей мощности, сколько систематичности, чем супермощные, феноменальные, но единичные йокульлаупы.

Высокие расходы и скорости суперпотоков определяли их способность производить огромную эрозионную и транспортирующую работу. Это следует из известных эмпирических формул, согласно которым твердый сток и интенсивность эрозии пропорциональны квадрату расхода русловых потоков и кубу их скорости. Строение скэбленда показывает, что геологическая работа, совершенная катастрофическими гляциальными суперпотоками, производилась поразительно быстро. Расчеты подтверждают, что для прохождения всего объема воды из Чуйско-Курайских озер через проанализированный участок потребовалось бы, на пике гидрографа, исходя из приведенных выше цифр, всего около 10 минут. Ю. Хергет получил величину продолжительности суперпаводка в долине р. Чуи в 2–3 дня.

Такие потоки имели чрезвычайно высокие напряжения сдвига ложа, описываемые в виде:

 

τ = γ DS;

ω = γ QS/W = τ V,

 

где τ – напряжение сдвига ложа; γ – удельный вес воды; S – уклон русла; Q – расход; V – средняя скорость течения воды; W – ширина потока. Комбинация этих факторов дает колоссальное давление на единицу площади ложа.

Согласно формулам и, при кульминациях фладстримов глубины дилювиальных потоков превышали 400 м, скорости варьировали от 20 до 45 м/с, а у Ю. Хергета – 72 м/с. Напряжения сдвига ложа составляли от 5000 н/м2 до 20000 н/м2, а мощность потока равнялась, соответственно, от 105 до 106 вт/м2.

А.Н. Костриков выполнил гидродинамическое моделирование для сверхмощных потоков, прорывавшихся из-под гигантского Арктического ледника. В качестве основы для разработки модели он использовал представления М.Г. Гросвальда о происхождении грядово-ложбинного комплекса Северной Евразии. Результаты моделирования представляют интерес и для понимания физической характеристики потопов, которые испытали в конце плейстоцена долины Горного Алтая, Тувы и территории Channeled Scabland в Северной Америке.

А.К. Костриков пишет, что при таких скоростях жидкость течет, практически не испытывая трения о ложе, двигаясь на кавитационной подушке из газовых пузырьков, возникающих вследствие уменьшения давления в жидкости ниже давления парообразования при обтекании неоднородностей подстилающей поверхности. На отдельных участках жидкость может представлять собой сложную смесь воды, льда, кавитационных пузырьков и взвеси, поднятой с подстилающей поверхности. При таких больших скоростях возможно и плавное уменьшение средней плотности «жидкости» с высотой вследствие образования волн, всплесков, пены и водной пыли. Таким образом, заключает А.Н. Костриков, поток мог не иметь «свободной поверхности» в традиционном понимании.

В лаборатории палеогидрологического и гидроклиматического анализа Аризонского университета было установлено, что для формирования главных черт рельефа изрезанных земель Колумбийского базальтового плато в Северной Америке при расходе паводка из озера Миссула в 17 млн. м3/с потребовалось не более 3 часов. Для совершения адекватной работы такой реке, как Миссисипи в ее половодном режиме, потребовалось бы, по крайней мере, 30 тысяч лет. Сравнение энергии четвертичных дилювиальных потоков Центральной Азии с потенциальной работой, например, Оби дадут результаты никак не менее впечатляющие.

 

 


Заключение

 

Современные реконструкции ледниковой палеогидрологии Алтая и Тувы начались с открытия и изучения рельефа и географии гигантских знаков ряби. Если другие формы скэбленда, особенно – в горах, могут иметь неоднозначную генетическую интерпретацию, то в совокупности с гигантской рябью они дают однозначный путь к реконструкциям: были крупные оледенения и были крупные ледниково-подпрудные озера. Были систематические и грандиозные их прорывы, в результате которых за часы-дни-недели кардинально менялась исходная топография. Гигантские знаки ряби течения, таким образом, – исключительное доказательство катастрофических прорывов ледниково-подпрудных озер и / или взрывного таяния криосферы.

Открытие и крупномасштабное картографирование новых местонахождений полей гигантских знаков ряби течения и других дилювиальных образований предоставит исследователю новый научный и методологический инструмент для реконструкции известной сегодня лишь в общих чертах грандиозной системы перигляциальных палеостоков всей Центральной и Северной Азии.

На территориях, где установлено четвертичное оледенение и приледниковые водоемы, должны быть обнаружены гигантские знаки ряби течения. На территориях, где обнаружены гигантские знаки ряби течения, должны быть обнаружены и следы четвертичных оледенений и ледниково-подпрудных озер.

Согласно реестру Американской геологической службы, позднечетвертичные алтайские дилювиальные потоки, открытые и реконструированные в первую очередь по гигантским знакам ряби течения, по своим гидравлическим характеристикам занимают первое место в мире, североамериканские миссульские – второе, и тувинские – третье.


Литература

1. Арнольд В.И. Теория катастроф. – М.: Наука, 1990. №2. 128 с.

2. Атлас снежно-ледовых ресурсов мира. – М.: РАН, 1997. Т.2. Кн. 2. 392 с.

3. Барышников Г.Я. Развитие рельефа переходных зон горных стран в кайнозое. – Томск: Томский ун-т, 1992. 182 с.

4. Барышников Г.Я., Платонова С.Г., В.П. Чичагов. Геоморфология гор и предгорий // Геоморфология, 2003. №1. С. 108–109.

5. Борисов Б.А., Минина Е.А. Ледниковые отложения Алтае-Саянской горной области. – Хронология плейстоцена и климатическая стратиграфия. Л.: Наука, 1973 С. 240–251.

6. Борисов Б.А., Минина Е.А. О гипотезе катастрофических гляциальных паводков на территории Алтае-Саянской области в свете геолого-геоморфологических данных // Всероссийское совещание «Главнейшие итоги в изучении четвертичного периода и основные направления исследований в ХХI веке». СПб, 1998. С. 90–91.

7. Бутвиловский В.В. О следах катастрофических сбросов ледниково-подпрудных озер Восточного Алтая // Эволюция речных систем Алтайского края и вопросы практики. – Барнаул, 1982. С. 12–17.

8. Бутвиловский В.В. Палеогеография последнего оледенения и голоцена Алтая: событийно-катастрофическая модель. – Томск: Томск. ун-т, 1993. 253 с.

9. Волков И.А., Зыкина В.С. Южная часть Западно-Сибирской равнины / Западная Сибирь // Развитие ландшафтов и климата Северной Евразии. – М.: Наука, 1993. Вып. 1. С. 32–35.

10. Геокриология СССР. Европейская территория СССР. – М.: Недра, 1988. 358 с.

11. Геокриология СССР. Средняя Сибирь. – М.: Недра, 1989. 414 с.

12. Гришанин К.В. Динамика русловых процессов. – Ленинград: Гидрометеоиздат, 1969. 166 с.

13. Гросвальд М.Г. Последнее оледенение Саяно-Тувинского нагорья: морфология, интенсивность питания, подпрудные озера // Взаимодействие оледенения с атмосферой и океаном / Ред. В.М. Котляков – М.: Наука, 1987. С. 152–170.

14. Гросвальд М.Г. Евразийские гидросферные катастрофы и оледенение Арктики. – М.: Научный мир, 1999, 120 с.

15. Гросвальд М.Г. Оледенение и вулканизм Саяно-Тувинского нагорья // Изв. РАН. Сер. географическая, 2003. №2. С. 83–92.

16. Гросвальд М.Г., Рудой А.Н. Ледниково-подпрудные озера в горах Сибири // Изв. РАН. Сер. географическая, 1996. №6. С. 112–126.

17. Девяткин Е.В. Кайнозойские отложения и новейшая тектоника Юго-Восточного Алтая // Тр. ГИН АН СССР, 1965. Вып. 126. 244 с.

18. Девяткин Е.В. Меридиональный анализ экосистем плейстоцена Азии // Стратиграфия. Геологическая корреляция, 1993. Т. 1. №4. С. 77–83.

19. Девяткин Е.В., Малаева Е.М., Мурзаева В.Э., Шевкопляс В.Н. Плювиальные плейстоценовые бассейны Котловины Больших озер Западной Монголии // Изв. АН СССР. Сер. географическая, 1978. №5. С. 11–19.

20. Диких А.Н. Современное оледенение Центрального Тянь-Шаня и его роль в формировании стока р. Сары-Джаз // Проблемы освоения гор. – Фрунзе: Илим, 1982. С. 40–48.

21. Диких А.Н. Ледниковый сток рек Тянь-Шаня и его роль в формировании общего стока // Материалы гляциологических исследований, 1993. Вып. 77. С. 41–50.

22. Дюргеров М.Б. Изучение пространственно-статической структуры поля поверхностной абляции горного ледника // Материалы гляциологических исследований, 1976. Вып. 26. С. 140–144.

23. Дюргеров М.Б., Поповнин В.В. Реконструкция баланса массы, пространственного положения и жидкого стока ледника Джанкуат во второй половине XIX века // Материалы гляциологических исследований, 1981. Вып. 40. С. 73–81.

24. Знаменская Н.С. Грядовое движение наносов. – Ленинград: Гидрометеоиздат, 1968. 188 с.

25. Климанов В.А. Климат Северной Евразии в позднеледниковье // Короткопериодические и резкие ландшафтно-климатические изменения за последние 15 000 лет / Ред. А.А. Величко. – М.: Наука, 1994. С. 61–94.

26. Кондратьев Н.Е., Попов И.В., Снищенко Б.Ф. Основы гидроморфологической теории руслового процесса. – Ленинград: Гидрометеоиздат, 1982. 272 с.

27. Костриков А.А. Геофизическая геодинамика сверхмощных потоков ледникового периода // Материалы гляциологических иследований, 2003. Вып. 95. С. 22–27.

28. Кренке А.Н. Массообмен в ледниковых системах на территории СССР. – Ленинград: Наука, 1986. Вып. 25. С. 99–125.

29. Лаврушин Ю.А. Строение и формирование основных морен материковых оледенений. – М.: Наука, 1976. 238 с.

30. Лунгерсгаузен Г.Ф., Раковец О.А. Некоторые новые данные о стратиграфии третичных отложений Горного Алтая // Тр. ВАГТ, 1958. Вып. 4. 1958. С. 79–91.

31. Лукина Н.В. История Дархатского палеоозера в свете корреляции событий плейстоцена Азии // Стратиграфия и корреляция четвертичных отложений Азии и Тихоокеанского региона / Ред. Г.И. Худяков. – М.: Наука, 1991. С. 85–90.

32. Мацера А.А. Рельефообразующая роль оледенения Восточного Саяна // Геоморфология, 1993. №. 3. С. 84–92.

33. Мурзаев Э.М. К палеогеографии Северной Гоби // Тр. Монгольской комиссии АН СССР. М.: Наука, 1949. Вып.



2019-05-24 194 Обсуждений (0)
Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков 0.00 из 5.00 0 оценок









Обсуждение в статье: Позднечетвертичная гляциогидрология и гидравлические характеристики дилювиальных потоков

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (194)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.016 сек.)