Мегаобучалка Главная | О нас | Обратная связь


Метод обращения матрицы



2019-07-03 1400 Обсуждений (0)
Метод обращения матрицы 0.00 из 5.00 0 оценок




Содержание

1. Метод последовательных приближений

2. Метод Гаусса-Зейделя

3. Метод обращения матрицы

4. Триангуляция матрицы

5. Метод Халецкого

6. Метод квадратного корня

Литература


Метод последовательных приближений

 

Наиболее распространенными методами применительно к большим системам являются итерационные методы, использующие разложение матрицы на сумму матриц, и итерационные методы, использующие факторизацию матрицы, т.е. представление в виде произведения матриц.

Простая итерация: уравнение  приводится к виду , например, следующим образом:

 

 ,

 

где  и  содержат произвольную матрицу коэффициентов, по возможности желательно близкую к .

Если выбрать A=H+Q так, чтобы у положительно определенной H легко находилась , тогда исходная система приводится к следующему удобному для итераций виду:

 

 .

 

В этом случае, при симметричной матрице A и положительно определенной Q итерационный процесс сходится при любом начальном .

Если взять H в виде диагональной матрицы D= , в которой лишь на главной диагонали расположены ненулевые компоненты, то этот частный случай называется итерационным методом Якоби.

 

Метод Гаусса-Зейделя

 

Метод Гаусса-Зейделя отличается тем, что исходная матрица представляется суммой трех матриц:


.

 

Подстановка в  и несложные эквивалентные преобразования приводят к следующей итерационной процедуре:

 

 .

 

Различают две модификации: одновременную подстановку и последовательную. В первой модификации очередная подстановка выполняется тогда, когда будут вычислены все компоненты нового вектора. Во второй модификации очередная подстановка вектора выполняется в тот момент, когда будет вычислена очередная компонента текущего вектора. В векторно-матричной форме записи последовательная подстановка метода Гаусса-Зейделя выглядит так:

 

 .

 

Вторая форма требует существенно меньшее число итераций.

 

Метод обращения матрицы

 

Эквивалентные преобразования матрицы в произведение более простых, приводящих к решению или облегчающих его получение, начнем с рассмотрения метода обращения матрицы. Так как в общем виде решение системы представляется через обратную матрицу в виде , то предположим, что

 

 ,


тогда, умножив справа равенство на матрицу A , получим

 

 .

 

Отсюда можно сделать вывод, что матрицы  должны последовательно сводить матрицу A к единичной. Если преобразующую матрицу выбрать так, чтобы только один ее столбец отличался от единичных векторов-столбцов, т.е.  , то вектор-столбец  можно сформировать таким, чтобы при умножении на текущую преобразуемую матрицу  в последней i-тый столбец превратился в единичный . Для этого берут

 

 и тогда .

 

Фактически это матричное произведение преобразует все компоненты промежуточной матрицы по формулам, применяемым в методе исключения Гаусса. Особенность этого процесса заключается в том, что диагональные элементы исходной и всех промежуточных матриц не должны быть нулевыми.

Кроме обратной матрицы, равной произведению всех T-матриц, теперь можно получать и решения уравнений для любого вектора в правой части.

 


Триангуляция матрицы

 

Разложение исходной матрицы на произведение двух треугольных матриц (триангуляция матрицы) не является однозначной. В соответствии с этим имеется несколько различных методов, привлекательных с той или иной стороны.

Сам способ формирования уравнений или формул для вычисления элементов треугольных матриц в различных методах практически одинаков: это метод неопределенных коэффициентов.

Различия возникают на стадии выбора условий разрешения полученных уравнений. Пусть

 

 ,

 

где  –

нижняя треугольная матрица,

 –

верхняя треугольная матрица.

Выполняя перемножения треугольных матриц и приравнивая получающиеся элементы соответствующим элементам исходной матрицы несложно для k-той строки и m-того столбца записать

 

 .

 

Полученная система состоит из  уравнений и содержит  неизвестных коэффициентов. За счет лишних n неизвестных существует свобода выбора, благодаря которой и имеется разнообразие методов разложения.

 

Метод Халецкого

 

Если положить , то разложение и последующее решение системы из двух векторно-матричных уравнений с треугольными матрицами называется методом Халецкого.

Элементы треугольных матриц L и U последовательно будут вычисляться по следующим формулам:

 

 

Если исходная матрица симметричная, то от треугольных матриц можно потребовать, чтобы они были друг к другу транспонированными, т.е., например,  и  так, что . В этом случае элементы треугольных матриц находятся в соотношении  и, следовательно, число неизвестных уменьшается вдвое. В результате элементы треугольной матрицы могут вычисляться по следующим формулам:

 




2019-07-03 1400 Обсуждений (0)
Метод обращения матрицы 0.00 из 5.00 0 оценок









Обсуждение в статье: Метод обращения матрицы

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1400)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)