Мегаобучалка Главная | О нас | Обратная связь


Использование северного холода



2019-07-03 181 Обсуждений (0)
Использование северного холода 0.00 из 5.00 0 оценок




 

Значительная разность температур, существующая на далеком Севере между водой, находящейся под коркой льда, и окружающим воздухом, может быть использована для получения механической энергии. Представим себе следующее сооружение. Под льдом находится обтекаемый проточной водой котел, наполненный аммиаком. Нагревая его до 0 °С, вода поднимает давление до 4.5 атм. При этом давлении аммиак поступает в турбину или машину, совершенно подобную применяемым для водяного пара. Производя работу, аммиак понижает давление до 0.7 атм, а температуру до – 40 °С и переходит в конденсатор, где он при этой температуре конденсируется другой жидкостью, предварительно охлажденной внешним воздухом. Для этого жидкость разбрызгивается и, падая в виде многочисленных капель с громадной поверхности, охлаждается до необходимой температуры. Подсчитывая стоимость отдельных частей такой установки по тем данным, которые применяются для обычных тепловых установок, проф. Власов получил для установок в 5000–10 000 кВт стоимость не выше 150 руб. на 1 кВт для Якутска и 250–300 руб. для других районов Сибири. Стоимость 1 кВф·4 получается от 1 до 3 коп. Если эти подсчеты, сделанные без конструктивного проекта установки, без учета мер против возможного намерзания жидкости на котле и сооружения для распыления ее, окажутся не совсем точными, то даже увеличение стоимости в 2–3 раза не изменит факта экономической выгодности таких установок на Крайнем Севере, лишенном топлива и других источников энергии. Проф. Власов находит даже, что более дорогие и менее продуктивные термоэлектрические установки благодаря крайней простоте эксплуатации могут оказаться выгодными в определенных климатических условиях. К этой задаче примыкает и другая, относящаяся к эксплуатации теплофикационных центральных станций. Отопительная система возвращает теплую воду при температуре на несколько десятков градусов выше водопроводной воды. И эта разность температур могла бы быть использована для получения механической и электрической энергии.

 

Аккумулирование энергии

 

При оценке машин для использования новых источников энергии – солнца, ветра, северного холода и т.п. – приходится исходить не из коэффициента полезного действия, а из стоимости установки и занимаемой полезной площади. Однако эти источники обладают еще одним существенным недостатком: они дают энергию часто не тогда и не там, где она нужна. Их экономическая целесообразность поэтому в большей мере зависит от возможности запасать, например, дневную энергию на ночь или передавать на места потребления. Важнейшим вопросом является дешевый и легко транспортируемый аккумулятор. Зато важнейшая для современного энергетического хозяйства его характеристика – коэффициент полезного действия – имеет сравнительно меньшее значение. Эта новая постановка вопроса допускает и новые решения. Предположим, например, что на местах дешевой энергии мы затрачиваем ее для получения алюминия, а затем этим алюминием пользуемся в качестве электрода в гальваническом элементе. Если мы получим только треть затраченной энергии, это может оказаться крайне выгодным, например для некоторых видов транспорта. Проф. В.Г. Глушков предложил пользоваться дешевой энергией для разложения воды, передавая затем полученный водород по трубам на большие расстояния. Соединяя водород с кислородом воздуха, можно вновь получить значительную часть затраченной энергии и воду. Очевидно, можно придумать и ряд других дешевых и невысоких по качеству аккумуляторов. Выработка практически пригодного типа такого аккумулятора – одна из актуальных задач электрохимии.

 

Отопление

 

Несовершенство современных методов отопления и громадные количества топлива, на него затрачиваемые, заставляют задуматься о других способах поддержания достаточной температуры в зданиях. Наши печи используют 10%, лучшее центральное отопление – около 50% теплоты, выделяемой топливом. Это еще не так плохо. Но энергию приходится оценивать не только количественно, но и качественно. Если судить об энергии по количеству механической или электрической энергии, которые можно извлечь из данного запаса, то следует сказать, что химическая энергия 1 кг угля, выделяющего 8000 кал, могла бы дать не менее 8000 кал электрической энергии, если бы мы умели превратить ее без потерь. На лучших электростанциях мы все же получаем только до 2500 кал. Это количество определяется высокой температурой в топке парового котла. В зданиях же мы хотим создать температуру всего в 20 °С. При этой температуре те же 8000 кал могли бы дать при температуре внешнего воздуха в 10 °С не больше 800 кал электроэнергии. Наоборот, затратив 800 кал электроэнергии, мы могли бы ввести в здание 8000 кал тепла при 20 °С. Остальные 7200 кал были бы взяты от внешнего холодного воздуха. Эти цифры характеризуют теоретические возможности и не учитывают потерь в наших машинах. Практически соотношения в 2–3 раза ухудшаются: для сообщения 8000 кал потребуется не меньше 2000 кал электроэнергии.

Исходя из расхода топлива, сравним два способа согревания помещения: 1) для того чтобы ввести в здание 8000 кал тепла при коэффициенте полезного действия в 50% путем центрального отопления, потребуется 2 кг угля; 2) для той же цели можно взять от электростанции, скажем, 3000 кал электроэнергии, приводящей во вращение мотор холодильной установки. Эта установка, охлаждая обтекающий ее внешний воздух, будет согревать воздух, направляемый в здание, и сообщать ему те же 8000 кал. На электрической же станции для получения 3000 кал электроэнергии потребовалось немногим больше 1 кг угля. При втором способе отопления вместо котлов и отопительных батарей здание должно быть оборудовано достаточно мощной холодильной машиной, которая летом может служить как холодильная установка.

Целесообразное решение задачи отопления с минимальным расходом топлива представляется в следующем виде. Электрическая станция теплофицирует отходящим теплом своих турбогенераторов прилегающий район. Однако соотношение между потреблением электрической и тепловой энергией таково, что отопить весь город, который станция освещает, невозможно. В более отдаленные районы подается электрическая энергия, которая в упомянутых холодильных установках затрачивается на согревание помещения.

Наконец, есть еще один способ экономии топлива. Количество топлива, затрачиваемого на согревание здания, определяется охлаждением через внешние стены и крышу. Чем больше площадь пола по сравнению с поверхностью стен, тем меньше приходится топлива на единицу полезной площади. В тех местностях (например, на Крайнем Севере), где отопление является центральным вопросом жилищного строительства, можно учитывать возможность использования помещений без внешних стен, окруженных со всех сторон жилыми комнатами той же температуры, что и данное помещение. Оно тогда ничего не теряет, его не нужно и отапливать. Несомненно, что целый ряд помещений не требует внешних окон, и, следовательно, при целесообразной постройке их не требуется и отопления. Не только залы для кино и театров, но и некоторые заводы и фабрики могли бы значительно улучшить условия труда, если бы, не рассчитывая на боковое освещение окон, рационально распределили электрическое освещение. Вместо отопления на первый план стал бы вопрос о вентиляции и об электрических источниках света. Необходимо увеличить количество полезных для здоровья ультрафиолетовых лучей. Уже сейчас имеются удобные и недорогие источники, дающие электрический свет, по составу не отличающийся от солнечного. Можно с уверенностью ожидать, что в течение ближайших двух лет будут практически разработаны лампы со светящимся газом, гораздо более дешевые и более богатые ультрафиолетовым светом. Тогда этот вопрос станет весьма реально на очередь, и количество помещений, в которых можно будет отказаться от окон, а следовательно, и от затрат на отопление, возрастет. Но и по отношению к окнам вопрос об ультрафиолетовом свете не теряет своего значения. Наши оконные стекла его не пропускают, хотя производство стекол прозрачных и для этих лучей стоило бы не так уж дорого. Гигиеническое значение этих стекол громадно.

Обратимое окисление угля, которое в три раза повысило бы использование угля для механической и электрической энергий. Газогенераторы и газопроводы, удешевляющие транспорт топлива. Атмосферное электричество, энергия волн, приливов и отливов, внутренняя теплота Земли – все это громадные количества энергии, слишком рассеянной, мало концентрированной для условий современной техники. Первые же успехи в области регулирования погоды, хотя бы выпадения дождей, позволили бы усилить осадки в высоких местностях за счет более низких и таким образом резко усилить запасы водных сил. Меньше всего можно в данное время сказать о возможности использования внутриатомных источников энергии при преобразовании элементов. Мы знаем, насколько велики количества энергии в этих случаях, но совсем не знаем, как ими управлять.



2019-07-03 181 Обсуждений (0)
Использование северного холода 0.00 из 5.00 0 оценок









Обсуждение в статье: Использование северного холода

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (181)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)