Мегаобучалка Главная | О нас | Обратная связь


Марганец - простое вещество и его свойства.



2019-07-03 326 Обсуждений (0)
Марганец - простое вещество и его свойства. 0.00 из 5.00 0 оценок




Тверской Государственный Университет

Курсовая работа студентки 15 группы Коршуновой Юлии Александровны “Металлы жизни. Марганец”     Руководитель: к.т.н. Андреева Г.И.
Тверь - 1996.
Кафедра неорганической и аналитической химии

СОДЕРЖАНИЕ

1. Марганец - химический элемент....................................................................................

2. Природные ресурсы..........................................................................................................

3. Получение...............................................................................................................................

4. Марганец - простое вещество и его свойства..........................................................

5. Соединения Mn (II)................................................................................................................

6. Соединения Mn (III)...............................................................................................................

7. Соединения марганца в биологических системах.................................................

8. Применение...........................................................................................................................


    1. Марганец - химический элемент.

Марганец - d-элемент VII группы периодической системы, с конфигурацией валентных электронов 3d54s2.

3d

  4s  

4p

¯ ¯ ¯ ¯ ¯   ¯­        
                     

 

Некоторые сведения об этом элементе приведены ниже:

              Атомная масса...................................................................... 54,9380

              Валентные электроны............................................................. 3d54s2

                    Металлический атомный радиус, нм................................... 0,130

              Условный радиус иона Mn2+, нм........................................... 0,052

              Условный радиус иона Mn7+, нм........................................... 0,046

              Энергия ионизации Mn0 ® Mn+, эВ........................................ 7,44

              Содержание в земной коре, мол. доли, %...................... 3,2·10-2

              Природные изотопы.................................................... 55Mn (100%)

 

       В отличие от p-элементов, марганец образует химические связи за счет орбиталей как внешнего, так и предвнешнего квантовых слоев, за счет 3d-, 4s- и 4p- орбиталей. Для марганца характерны степени окисления +2, +4 и +7, что отвечает устойчивой не связывающей электронной конфигурации d5 или d3, а также d0. Существуют соединения марганца, в которых он проявляет степени окисления 0,+3, +5 и +6. Для марганца наиболее типичны координационные числа 6 и 4. Влияние степени окисления и отвечающей ей электронной конфигурации атома на структуру комплексов (структурных единиц) марганца показано в таблице 1.

       С ростом степени окисления у марганца тенденция к образованию анионных комплексов возрастает, а катионных падает (усиливается характер их бинарных соединений).

Таблица 1

Степени окисления и пространственная конфигурация

комплексов (структурных единиц) марганца

 

Степень окисления Электрон-ная конфигу-рация Кооррдина-ционное число Пространственная конфигурация комплекса Примеры соединений
0 d7 6 Октаэдр Mn2(CO)10
Степень окисления Электрон-ная конфигу-рация Кооррдина-ционное число Пространственная конфигурация комплекса Примеры соединений
+2 d5 4 6 Тетраэдр Октаэдр [MnCl4]2- [Mn(OH2)6]2+, [MnF6]4-, MnO, MnF2, MnCl2, Mn(OH)2
+3 d4 6 Октаэдр Mn2O3
+4 d3 6 Октаэдр MnO2
+6 d1 4 Тетраэдр [MnO4]2-

 

Для химии марганца очень характерны окислительно-восстановительные реакции. При этом кислая среда способствует образованию катионных комплексов Mn (II), а сильнощелочная среда - анионных комплексов Mn (VI). В нейтральной среде (а также слабокислой и слабощелочной) при окислительно-восстановительных процессах, образуются производные Mn (IV) (чаще всего MnO2).

 

    2. Природные ресурсы.

Марганец принадлежит к весьма распространённым элементам, составляя 0,03% от общего числа атомов земной коры. Среди тяжёлых металлов (атомный вес больше 40), к которым относятся все элементы переходных рядов, марганец занимает по распространенности в земной коре третье место вслед за железом и титаном. Небольшие количества марганца содержат многие горные породы. Вместе с тем, встречаются и скопления его кислородных соединений, главным образом в виде минерала пиролюзита - MnO2. Большое значение имеют также минералы гаусманит - Mn3O4 и браунит - Mn2O3.

 

    3. Получение.

Чистый марганец может быть получен электролизом растворов его солей. Однако, поскольку 90% всей добычи марганца потребляется при изготовлении различных сплавов на основе железа, из руд обычно выплавляют прямо его высокопроцентный сплав с железом - ферромарганец (60-90% - Mn и 40-10% - Fe). Выплавку ферромарганца из смеси марганцовых и железных руд ведут в электрических печах, причём марганец восстанавливается углеродом по реакции:

MnO2 + 2C + 301 кДж = 2СО + Mn

Небольшое количество металлического марганца в лаборатории легко приготовить алюмотермическим методом:

3Mn3O4 + 8Al = 9Mn + 4Al2O3; DH0 = -2519 кДж

 

Марганец - простое вещество и его свойства.

       Марганец - серебристо-белый твёрдый хрупкий металл. Известны четыре кристаллические модификации марганца, каждая из которых термодинамически устойчива в определённом интервале температур. Ниже 7070 С устойчив a-марганец, имеющий сложную структуру - в его элементарную ячейку входят 58 атомов. Сложность структуры марганца при температурах ниже 7070 С обусловливает его хрупкость.

       Некоторые физические константы марганца приведены ниже:

              Плотность, г/см3.......................................................................... 7,44

              Т. Пл., 0С ..................................................................................... 1245

                    Т.кип., 0С.................................................................................... ~2080

              S0298, Дж/град·моль............................................................................ 32,0

              DHвозг. 298, кДж/моль........................................................................ 280

              E0298 Mn2+ + 2e = Mn, В............................................................. -1,78

 

       В ряду напряжений марганец располагается до водорода. Он довольно активно взаимодействует с разбавленной HCl и H2SO4.В соответствии с устойчивыми степенями окисления взаимодействие марганца с разбавленными кислотами приводит к образованию катионного аквокомплекса [Mn(OH2)6]2+:

Mn + 2OH3- + 4H2O = [Mn(OH2)6]2+ + H2

       Вследствие довольно высокой активности, марганец легко окисляется, в особенности в порошкообразном состоянии, при нагревании кислородом, серой, галогенами. Компактный металл на воздухе устойчив, так как покрывается оксидной плёнкой (Mn2O3), которая, в свою очередь, препятствует дальнейшему окислению металла. Ещё более устойчивая плёнка образуется при действии на марганец холодной азотной кислоты.

       Для Mn2+ менее характерно комплексообразование, чем для других d-элемен-тов. Это связано с электронной конфигурацией d5 иона Mn2+. В высокоспиновом комплексе электроны заполняют по одному все d-орбитали:

 

t2g

eg

Mn2+ ­ ­ ­ ­ ­
           

 

       В результате, на орбиталях содержатся d-электроны как с высокой, так и с низкой энергией; суммарный выигрыш энергии, обусловленный действием поля лигандов, равен нулю.

 

Соединения Mn (II)

       Для марганца (II) характерно координационное число шесть, что соответствует октаэдрическому расположению связей. Соединения Mn (II) парамагнитны и, за исключением цианидов, содержат пять непарных электронов. Строение высокоспиновых октаэдрических комплексов Mn (II) соответствует следующей электронной конфигурации:

[ssсв]2[spсв]6[sdсв]4[pd]3[sdразр]2

                              —               —               —

                                                                 —

                                      ­               ­

                                ­                ­                ­

                                                     ­¯              ­¯

                                ­¯              ­¯              ­¯

                                                                     ­¯

 

       Бинарные соединения марганца (II) - кристаллические вещества с координационной или слоистой решёткой. Например, MnO и MnS имеют структуру типа NaCl, к структурному типу рутила относится MnF2 (см. рис.1), слоистую структуру имеют MnCl2, Mn(OH)2 (см. рис.2).

 


Рис.1. Координационная решётка типа рутила кристалла MnF2

       Mn             F

 


Рис.2. Структура слоя MnCl2

 

       Mn             Cl

 


 


       Большинство солей Mn(II) хорошо растворимы в воде. Мало растворимы MnO, MnS, MnF2, Mn(OH)2, MnCO3 и Mn3(PO4)2. При растворении в воде соли Mn(II) диссоциируют, образуя аквокомплексы [Mn(OH2)6]2+, придающие растворам розовую окраску. Такого же цвета кристаллогидраты Mn(II), например Mn(NO3)2 · 6H2O, Mn(ClO4)2 · 6H2O.

       По химическим свойствам бинарные соединения Mn(II) амфотерны (преобладают признаки основных соединений). В реакциях без изменения степени окисления для них наиболее характерен переход в катионные комплексы. Так, оксид MnO, как и гидроксид Mn(OH)2, легко взаимодействуют с кислотами:

MnO + 2OH3+ + 3H2O = [Mn(OH2)6]2+

       Со щелочами они реагируют только при достаточно сильном и длительном нагревании:

Mn(OH)2 + 4OH- = [Mn(OH)6]4-

       Из гидроксоманганатов (II) выделены в свободном состоянии K4[Mn(OH)6], Ba2[Mn(OH)6] (красного цвета) и некоторые другие. Все они в водных растворах полностью разрушаются. По этой же причине ни металлический марганец, ни его оксид и гидроксид в обычных условиях со щелочами не взаимодействуют.

       Оксид MnO (серо-зелёного цвета, т.пл. 17800 C) имеет переменный состав (MnO-MnO1,5), обладает полупроводниковыми свойствами. Его обычно получают, нагревая MnO2 в атмосфере водорода или термически разлагая MnCO3.

       Поскольку MnO с водой не взаимодействует, Mn(OH)2 (белого цвета) получают косвенным путём - действием щелочи на раствор соли Mn (II):

MnSO4 (р) + 2KOH (р) = Mn(OH)2 (т) + K2SO4 (р)

       Кислотные признаки соединения Mn (II) проявляют при взаимодействии с однотипными производными щелочных металлов. Так, нерастворимый в воде Mn(CN)2 (белого цвета) за счёт комплексообразования растворяется в присутствии KCN:

4KCN + Mn(CN)2 = K4[Mn(CN)6] (гексацианоманганат (II))

       Аналогичным образом протекают реакции:

4KF + MnF2 = K4[MnF6] (гексафтороманганат (II))

2KCl + MnCl2 = K2[MnCl4] (тетрахлороманганат (II))

       Большинство манганатов (II) (кроме комплексных цианидов) в разбавленных растворах распадается.

       При действии окислителей производные Mn (II) проявляют восстановительные свойства. Так, в щелочной среде Mn(OH)2 легко окисляется даже молекулярным кислородом воздуха, поэтому осадок Mn(OH)2, получаемый по обменной реакции, быстро темнеет:

                              +2                              +4

6Mn(OH)2 + O2 = 2Mn2MnO4 + 6H2O

В сильнощелочной среде окисление сопровождается образованием оксоманганатов (VI) - производных комплекса MnO42-:

       +2                    +5                                      +6 -1

3MnSO4 + 2KClO3 + 12KOH = 3K2MnO4 + 2KCl + 3K2SO4 + 6H2O

сплавление

Сильные окислители, такие, как PbO2 (окисляет в кислой среде), переводят соединения Mn (II) в оксоманганаты (VII) - производные комплекса MnO-4:

+2        +4                               +7        +2     +2

2MnSO4 + 5PbO2 + 6HNO3 = 2HMnO4 + 3Pb(NO3)2 + 2PbSO4 + 2H2O

Последняя реакция используется в аналитической практике как качественная реакция на соединения марганца.

 

Соединения Mn (III)

       При нагревании любого оксида или гидроксида марганца до 10000 C образуются чёрные кристаллы гаусманита Mn3O4. Это шпинель Mn(II)Mn(III)2O4. При окислении Mn(OH)2 на воздухе образуется гидратированный оксид, при высушивании которого получается MnO(OH)2.

       Ион трёхвалентного марганца в растворе можно получить электролитическим или персульфатным окислением Mn2+, а также при восстановлении MnO-4. В высоких концентрациях его получить нельзя, поскольку он восстанавливается водой. В слабокислых растворах ярко выражена тенденция к гидролизу и диспропорционированию:

2Mn3+ + 2H2O = Mn2+ + MnO2 (тв.) + 4H+     K » 109

       Темно-коричневый кристаллический ацетилацетонат трехвалентного марганца легко получается при окислении Mn2+ кислородом или хлором в щелочном в присутствии ацетилацетона.

       Основной ацетат с трехкоординированным атомом кислорода в центре, который получают действием KMnO4 на ацетат Mn2+ в уксусной кислоте, окисляет олефины до лактонов. Он используется в промышленности для окисления толуола в фенол.

       Комплексы трех- и четырехвалентного марганца играют, по-видимому, важную роль в фотосинтезе, где выделение кислорода зависит от наличия марганца.

 



2019-07-03 326 Обсуждений (0)
Марганец - простое вещество и его свойства. 0.00 из 5.00 0 оценок









Обсуждение в статье: Марганец - простое вещество и его свойства.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (326)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.025 сек.)