Мегаобучалка Главная | О нас | Обратная связь


Многоканальная система передачи информации



2019-07-03 214 Обсуждений (0)
Многоканальная система передачи информации 0.00 из 5.00 0 оценок




 

В цифровой системе передачи информации (СПИ) передаваемый сигнал является последовательностью М-ичных символов.

Значение каждого символа передается при помощи радиоимпульса прямоугольной формы, используя один из методов модуляции, описанных в разд. 2.8. В процессе передачи сигнала по линии эти импульсы случайным образом искажаются (обычно это происходит из-за наличия мультипликативной помехи) и появляется аддитивная помеха.

Демодулятор к моменту окончания очередного принимаемого импульса должен указать (точнее, угадать), которое из М возможных значений символа было передано с данным импульсом. Очевидно, что иногда демодулятор будет выдавать ошибочные решения, поэтому желательно применять такой способ обработки импульса, который при заданных характеристиках сигналов и помех обеспечивает минимум полной вероятности ошибки Р. Это и есть главный критерий качества приема в цифровой СПИ.[1]

Чтобы следовать этому критерию, для обработки очередного импульса нужно использовать такой алгоритм, который учитывает все сведения об ожидаемом импульсе, которые известны к данному моменту (момент прихода и длительность, несущая частота и начальная фаза, характер искажений огибающей и закон паразитной внутриимпульсной фазовой модуляции и т.п.). Это и есть априорные сведения, и чем их больше, тем меньше будет вероятность ошибок, допускаемых демодулятором, который учитывает эти сведения.

Некоторые параметры ожидаемого импульса известны с высокой точностью. Например, в канале с постоянными параметрами принимаемый сигнал повторяет по форме передаваемый, поэтому известны длительность импульса и его амплитуда. Считается, что известны также текущие значения несущей частоты и частоты повторения импульсов, но здесь многое зависит от стабильности генераторов, задающих эти частоты в передатчике, и генераторов, воспроизводящих эти же колебания в приемнике. Фактически эти генераторы играют роль часов, по которым планируется график формирования (обработки) сигнала в передатчике (приемнике). Чем выше синхронность хода часов приемника по отношению к часам передатчика, тем выше качество приема.

Те устройства приемника, которые обеспечивают условия, при которых частота и даже текущая фаза генератора несущей в приемнике с достаточной точностью совпадают с соответствующими параметрами генератора в передатчике, называются системой обеспечения когерентности. Аналогично, система тактовой синхронизации формирует в приемнике тактовые импульсы, которые с достаточной точностью указывают момент времени, когда начинается очередной принимаемый импульс (следовательно, заканчивается предыдущий).[2]

Обеспечить качественную синхронизацию обычно бывает проще, нежели когерентность, поскольку несущая частота, как правило, существенно выше тактовой частоты. В связи с этим принято рассматривать три типа систем по степени их когерентности.

Когерентной называется СПИ, в которой ожидаемые значения начальных фаз всех принимаемых импульсов (вплоть до окончания сеанса связи) известны заранее, и эти сведения используются при демодуляции импульсов. Другими словами, генераторы несущей в передатчике и приемнике должны обладать столь высокой стабильностью, чтобы фазы выдаваемых колебаний не расходились заметно в течение сеанса связи. Когерентная СПИ - это идеал, который используется лишь для сравнения с другими СПИ, реализуемыми практически.

Частично-когерентной называется СПИ, в которой ожи-даемые значения начальных фаз всех принимаемых импуль-сов заранее неизвестны, но в процессе приема они оцениваются, и эти сведения используются при демодуляции импульсов. Другими словами, генератор несущей в приемнике при помощи устройства фазовой автоподстройки частоты (ФАПЧ) постоянно синхронизируется с генератором передатчика. Подстройка осуществляется по самому принимаемому сигналу. И в этом случае генераторы несущей должны обладать некоторой стабильностью частоты, достаточной, например, для того, чтобы в случае разрыва цепи ФАПЧ фазы выдаваемых колебаний не расходились заметно хотя бы в течение нескольких сотен импульсов, что вполне реализуемо. Поэтому именно частично-когерентную СПИ на практике обычно называют когерентной. [3]

Некогерентной называется СПИ, в которой ожидаемые значения начальных фаз всех принимаемых импульсов неиз-вестны и не оцениваются в процессе приема (ФАПЧ не применяется). Прием очередного импульса рассматривается как прием сигнала со случайной начальной фазой, равномерно распределенной в интервале 0-2?. Для этого генераторы несущей в передатчике и приемнике должны обладать лишь такой стабильностью, чтобы фазы выдаваемых колебаний не расходились заметно хотя бы в течение одного импульса. Поэтому некогерентная СПИ оказывается проще и дешевле. [4]

Очевидно, что когерентная СПИ, в принципе, может обеспечить меньшую вероятность ошибки, чем частично-когерентная и, в еще большей степени, некогерентная СПИ.

Подобным образом можно классифицировать цифровые СПИ как синхронные и асинхронные. В синхронной СПИ передача каждого символа (импульса) начинается в тактовый момент времени, при этом периодическая последовательность тактовых импульсов генерируется постоянно. Благодаря этому в приемнике имеется возможность осуществлять ФАПЧ местного генератора тактовых импульсов по принимаемому сигналу и предсказывать ожидаемые моменты прихода для большого количества ближайших символов.

В асинхронной СПИ передача первого символа кодовой комбинации начинается в произвольный момент времени, правда, остальные символы следуют за ним через равные интервалы известной величины. В связи с этим в начале каждой кодовой комбинации обязательно нужно передавать дополнительный, стартовый, импульс, которые запускает в приемнике ждущий генератор тактовых импульсов с той же частотой повторения. Таким способом предсказывается ожидаемое время прихода всех импульсов, но только для данной кодовой комбинации. [5]

Другой фактор, определяющий уровень априорных сведений о сигнале, это мультипликативная помеха. При воздействии мультипликативной помехи в виде временных селективных замираний амплитуды и начальные фазы принимаемых импульсов достаточно медленно, но случайным образом изменяются во времени. Демодуляция превращается в прием импульсов известной формы, но со случайными амплитудой и начальной фазой, при этом, как правило, удается обеспечить частичную когерентность СПИ.

При воздействии мультипликативной помехи в виде частотных селективных замираний форма принимаемых импульсов становится случайной, но неизменной во времени и демодуляция превращается в прием импульсов неизвестной (случайной) формы. [6]

При воздействии мультипликативной помехи общего вида форма принимаемых импульсов становится случайной и при этом медленно изменяется (флуктуирует) во времени, увеличивается межсимвольная интерференция. Оптимальный прием таких сигналов существенно усложняется, при этом заметно увеличивается вероятность ошибки.

Таким образом, при выборе способа демодуляции импульсов и при вычислении достигаемой при этом вероятности ошибки необходимо четко определить характер аддитивных и мультипликативных помех, воздействующих на сигнал.[7]


Разработка СПИ

 

Цель: разработка устройства передачи данных «Атлас - Ф»



2019-07-03 214 Обсуждений (0)
Многоканальная система передачи информации 0.00 из 5.00 0 оценок









Обсуждение в статье: Многоканальная система передачи информации

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (214)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)