Мегаобучалка Главная | О нас | Обратная связь


Динамический расчёт автомобиля



2019-07-03 183 Обсуждений (0)
Динамический расчёт автомобиля 0.00 из 5.00 0 оценок




 

Графическое изображение зависимости динамического фактора от скорости движения автомобиля называется динамической характеристикой автомобиля. Для построения теоретической динамической характеристики необходимы данные внешней скоростной характеристики двигателя [Me=f(n)], параметры ходовой части (rk) и передаточные числа трансмиссии (iтр).

На зависимости Me=f(n) выделяют не менее пяти точек. Для выделенных точек последовательно определяют:

1. Скорость движения автомобиля

 

V = 2 • π • rk • n / iтр

 

2. Силу сопротивления воздушного потока


Pw = k • F • V2

 

3. Касательную силу тяги на колесах

 

Pk = Me • iтр • ξтр / rk

 

4. Динамический фактор порожнего автомобиля

 

D = (Pk – Pw) / Ga

 

Каждая линия динамической характеристики автомобиля определяется не менее чем по пяти точкам. Вышеперечисленную последовательность повторяют для каждой передачи КПП, изменяя величину передаточного отношения трансмиссии.

Рассмотрим 1-ю передачу:

ik1 = 10.75; i0 = 4.84; rk = 0.3485; iтр = 52.03

Берем любые пять точек из данных внешней скоростной характеристики. Для них:

 

n (об/мин) 645 1032 1419 1999 2580
Me (H • M) 196.56809 205.25848 206.49996 194.3955 165.53103

 

1. Ищем скорость движения автомобиля по заданным пяти точкам:

V1 = 2 • 3.14 • 0.3485 • 645 / 52.03 • 60 = 0.1666

V2 = 2 • 3.14 • 0.3485 • 1032 / 52.03 • 60 = 0.7235

V3 = 2 • 3.14 • 0.3485 • 1419 / 52.03 • 60 = 0.9948

V4 = 2 • 3.14 • 0.3485 • 1999 / 52.03 • 60 = 1.4014

V5 = 2 • 3.14 • 0.3485 • 2580 / 52.03 • 60 = 1.8087


Ищем силу сопротивления воздушного потока по заданным пяти точкам:

Pw(1) = 0.5 • 3.5 • (0.1666)2 = 0.2916

Pw(2) = 0.5 • 3.5 • (0.7235)2 = 0.916

Pw(3) = 0.5 • 3.5 • (0.9948)2 = 1.7319

Pw(4) = 0.5 • 3.5 • (0.4014)2 = 3.4369

Pw(5) = 0.5 • 3.5 • (0.8087)2 = 5.7249

2. Ищем касательную силу тяги по заданным пяти точкам:

Pk(1) = 196.56809 • 52.03 • 0.82 / 0.3485 = 24064.56

Pk(2) = 205.25848 • 52.03 • 0.82 / 0.3485 = 25128.47

Pk(3) = 206.49996 • 52.03 • 0.82 / 0.3485 = 25280.45

Pk(4) = 194.3955 • 52.03 • 0.82 / 0.3485 = 23798.58

Pk(5) = 165.53103 • 52.03 • 0.82 / 0.3485 = 20264.89

3. Ищем динамический фактор порожнего автомобиля по заданным пяти точкам:

D(1) = (24064.56 – 0.2916) / 24525 = 0.9812

D(2) = (25128.47 – 0.916) / 24525 = 1.0246

D(3) = (25280.45 – 1.7319) / 24525 = 1.0307

D(4) = (23798.58 – 3.4369) / 24525 = 0.9702

D(5) = (20264.89 – 5.7249) / 24525 = 0.8261

Рассмотрим 2-ю передачу:

ik2 = 4.8; i0 = 4.84; rk = 0.3485; iтр = 23.232

 

n Me V Pw Pk D
645 196.58609 1.0127 1.7947 10745.11 0.4381
1032 205.25848 1.6203 4.5944 11220.15 0.4573
1419 206.49996 2.2279 8.68625 11288.02 0.4599
1999 194.3955 3.1386 17.2389 10626.34 0.4326
2580 165.53103 4.0508 28.7357 9048.51 0.3678

 


Рассмотрим 3-ю передачу:

ik3 = 2.2; i0 = 4.84; rk = 0.3485; iтр = 10.65

 

n Me V Pw Pk D
645 196.58609 2.2091 8.5402 4925.77 0.2005
1032 205.25848 3.5346 21.8635 5143.54 0.2088
1419 206.49996 4.8601 41.3360 5174.65 0.2093
1999 194.3955 6.8466 82.0329 4871.32 0.1952
2580 165.53103 8.8365 136.6465 4148.01 0.1635

 

Рассмотрим 4-ю передачу:

ik4 = 1; i0 = 4.84; rk = 0.3485; iтр = 4.84

 

n Me V Pw Pk D
645 196.58609 4.8610 41.3513 2238.56 0.0896
1032 205.25848 7.7776 105.8594 2337.53 0.091
1419 206.49996 10.6942 200.1403 2351.53 0.0877
1999 194.3955 15.0653 397.1857 2213.82 0.0741
2580 165.53103 19.4440 661.621 1890.11 0.0501

Динамическую характеристику строят для автомобиля определенного веса. Для того, чтобы её применить для анализа динамических свойств автомобиля различного веса, её необходимо дополнить, то есть сделать универсальной.

В начале строят характеристику порожнего автомобиля, а затем её дополняют. Определяют максимальное значение коэффициента загрузки:

 

Гmax = (ma + mг) / ma

 

где ma и mг – соответственно масса автомобиля и груза.

Гmax = (2500+2500) / 2500 = 2

Из точки, заданной максимальной скорости движения проводят вторую вертикальную координатную ось, с уменьшением в Гmax раз масштабом динамического фактора. Горизонтальную ось разбивают на разные отрезки и проводят вертикальные линии. На вертикальных осях равные значения динамического фактора соединяют наклонными прямыми.

Топливная экономичность автомобиля

 

Статистической обработкой топливно-экономических характеристик ДВС установлено, что удельный расход топлива определяется удельным расходом его при максимальной мощности двигателя и степенью использования мощности и частоты вращения.

Топливно-экономическую характеристику строят в предложении установившегося движения автомобиля по горизонтальной дороге с полной нагрузкой в следующей последовательности:

1. Задаются коэффициенты сопротивления качению автомобиля f:

f1 = f = 0.025

f2 = f + 0.03 = 0.055

f3 = f + 0.05 = 0.075

2. По универсальной динамической характеристике автомобиля определяют необходимую передачу для движения автомобиля.

3. Задаются пятью значениями скорости движения на определённой передаче.

4. Определяют соответствующие заданным значения скорости, величины частот вращения коленчатого вала двигателя.

n = 30 • V • iтр / (π • rk), об/мин

5. Определяют величины сил сопротивления воздушного потока Pw и сопротивление качению автомобиля Pf

 

Pf = f • (Ga + Gr)


При известных сопротивлениях Pw и Pf определяют необходимую для движения автомобиля мощность двигателя.

 

Ne/ = [(Pw + Pf) • V] / (103 • ξтр), кВт

 

6. Используя внешнюю скоростную характеристику двигателя, определяют степени использования мощности и частоты вращения И и Е

 

И = Ne/ / Neg

E = n/ / nN

 

7. По расчётным формулам определяют значения КИ и КЕ – коэффициенты, учитывающие степень использования мощности и частоты вращения коленчатого вала двигателя.

Для карбюраторных двигателей:

КИ = 3.27 – 8.22 • И + 9.13 • И2 – 3.18 • И3

КЕ = 1.25 – 0.99 • Е + 0.98 • Е2 – 0.24 • Е3

8. Определяют удельный расход топлива:

ge = geN • КИ • КЕ, г/кВт•ч

Величину geN принимают по данным внешней скоростной характеристики.

9. Определяют расход топлива на 100 км пути:

 

Qs = (ge • Ne/) / (36 • V • ρт), л

 

где ρт – плотность топлива, кг/л

10.Строят топливно-экономическую характеристику автомобиля

Для коэффициента сопротивления качению автомобиля f 1

f1 = 0.025

Определяем 4-ю передачу для движения автомобиля при f1

4. n1 = 645; n2 = 1032; n3 = 1419; n4 = 1999; n5 = 2580.

4. Pf = 0.025 • (2500 + 2500) • 9.8 = 1225

Pw1 = 41.3513; Pw2 = 105.8594; Pw3 = 200.1403; Pw4 = 397.1857;

Pw5 = 661.621

5. Ne1/ = [(41.3513 + 1225) • 4.861] / (103 • 0.82) = 7.5071

Ne2/ = [(105.8594 + 1225) • 7.7776] / (103 • 0.82) = 12.6231

Ne3/ = [(200.1403 + 1225) • 10.6942] / (103 • 0.82) = 18.5863

Ne4/ = [(397.1857 + 1225) • 15.0653] / (103 • 0.82) = 29.8033

Ne5/ = [(661.621 + 1225) • 19.44] / (103 • 0.82) = 44.73

6. И1 = 7.5071 / 13.270.31 = 0.5657

И2 = 12.6231 / 22.17119 = 0.5693

И3 = 18.5863 / 30.66978 = 0.606

И4 = 29.8033 / 40.68328 = 0.7326

И5 = 44.73 / 44.7 = 1.0007

E1 = 645 / 2580 = 0.25

E2 = 1032 / 2580 = 0.4

E3 = 1419 / 2580 = 0.55

E4 = 1999 / 2580 = 0.78

E5 = 2580 / 2580 = 1

7. КИ1 = 3.27 – 8.22 • 0.5657 + 9.13 • (0.5657)2 – 3.18 • (0.5657)3 = 0.9661

КИ2 = 3.27 – 8.22 • 0.5693 + 9.13 • (0.5693)2 – 3.18 • (0.5693)3 = 0.9628

КИ3 = 3.27 – 8.22 • 0.606 + 9.13 • (0.606)2 – 3.18 • (0.606)3 = 0.934

КИ4 = 3.27 – 8.22 • 0.7326 + 9.13 • (0.7326)2 – 3.18 • (0.7326)3 = 0.898

КИ5 = 3.27 – 8.22 • 1.0007 + 9.13 • (1.0007)2 – 3.18 • (1.0007)3 = 1.0003

КЕ1 = 1.25 – 0.99 • 0.25 + 0.98 • (0.25)2 – 0.24 • (0.25)3 = 1.06

КЕ2 = 1.25 – 0.99 • 0.4 + 0.98 • (0.4)2 – 0.24 • (0.4)3 = 0.996

КЕ3 = 1.25 – 0.99 • 0.55 + 0.98 • (0.55)2 – 0.24 • (0.55)3 = 0.962

КЕ4 = 1.25 – 0.99 • 0.78 + 0.98 • (0.78)2 – 0.24 • (0.78)3 = 0.959

КЕ5 = 1.25 – 0.99 • 1 + 0.98 • (1)2 – 0.24 • (1)3 = 1

8. ge1 = 353.33316 • 0.9661 • 1.05 = 361.837

ge2 = 327.89315 • 0.9628 • 0.996 = 314.433

ge3 = 315.17315 • 0.934 • 0.962 = 283.186

ge4 = 319.94317 • 0.898 • 0.959 = 275.53

ge5 = 353.33316 • 1.0003 • 1 = 353.455

9. Qs1 = (361.837 • 7.5071) / (36 • 4.861 • 0.75) = 20.697

Qs2 = (314.433 • 12.6231) / (36 • 7.7776 • 0.75) = 18.901

Qs3 = (283.186 • 18.5863) / (36 • 10.6942 • 0.75) = 18.229

Qs4 = (275.53 • 29.8033) / (36 • 15.0653 • 0.75) = 20.188

Qs5 = (353.455 • 47.73) / (36 • 19.44 • 0.75) = 30.121

Для коэффициента сопротивления качению автомобиля f 2

f2 = 0.055

Определим 3-ю передачу для движения автомобиля при f2:

 

n, об/мин V, м/с Pw, H Pf2 Ne/, кВт/ч И КИ КЕ ge, г/кВт•ч Qs, л
645 2.2091 8.5402

2675

7.2295 0.5448 0.9874 1.06 369.814 44.824
1032 3.5346 21.8635 11.6248 0.5243 1.0118 0.996 330.435 40.250
1419 4.8601 41.3360 16.0996 0.5249 1.0109 0.962 306.501 37.604
1999 6.8466 82.0329 23.0199 0.5658 0.9659 0.959 296.363 36.905
2580 8.8365 136.6465 30.2989 0.6778 0.9027 1 318.954 40.505

 

 

Для коэффициента сопротивления качению автомобиля f 3

f3 = 0.075

Определим 3-ю передачу для движения автомобиля при f3:

 

n, об/мин V, м/с Pw, H Pf2 Ne/, кВт/ч И КИ КЕ ge, г/кВт•ч Qs, л
645 2.2091 8.5402

3675

9.9235 0.7478 0.8988 1.06 336.631 56.007
1032 3.5346 21.8635 15.9353 0.7187 0.8977 0.996 293.172 48.953
1419 4.8601 41.3360 22.0265 0.7182 0.8977 0.962 272.181 45.687
1999 6.8466 82.0329 31.3694 0.7711 0.9023 0.959 276.849 46.979
2580 8.8365 136.6465 41.0751 0.9189 0.9584 1 338.635 58.299

Заключение

 

Составной частью курсовой работы является проведение теплового расчёта двигателя проектируемого автомобиля. Тепловой расчёт позволил аналитически с достаточной степенью точности определить основные параметры вновь проектируемого двигателя, а также оценить индикаторные и эффективные показатели его работы. Результаты теплового расчёта ДВС в дальнейшем использовались для расчёта и построения теоретической внешней скоростной характеристики двигателя, в свою очередь используемую при расчёте динамики автомобиля.

 

 


Список литературы

1. Автомобиль: основы конструкции/ Н.Н. Вишняков, В.К. Вахламов, А.Н. Нарбут и др. – М.: Машиностроение, 1986. – 304 с.; ил.

2. Осепчугов В.В., Фрумкин А.К. Автомобиль: анализ конструкций, элементов расчета. – М.: Машиностроение, 1989. – 304 с.; ил.

3. Литвинов А.С., Фаробин Я.Е. Автомобиль: теория эксплуатационных свойств. – М.: Машиностроение, 1989. – 240.; ил.

4. Устройство автомобиля/ Е.В. Михайловский, К.Б. Серебряков, Е.Я. Тур. – М.: Машиностроение, 1987. – 352 с.; ил.

5. Краткий автомобильный справочник. – М.: Транспорт, 1982. – 464 с. – (НИИАТ)

6. Автомобили: Методические указания по курсовому проектированию/ Сост. В.В. Макаров. – Йошкар–Ола: МарГТУ, 2001. – 44 с.



2019-07-03 183 Обсуждений (0)
Динамический расчёт автомобиля 0.00 из 5.00 0 оценок









Обсуждение в статье: Динамический расчёт автомобиля

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (183)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)