Мегаобучалка Главная | О нас | Обратная связь


Параметры и характеристики ПЗС



2019-07-03 270 Обсуждений (0)
Параметры и характеристики ПЗС 0.00 из 5.00 0 оценок




Перейдём рассмотрим параметры и характеристики ПЗС. Прежде всего, остановимся на их спектральных характеристиках - зависимости выходного сигнала от длины волны, или, что эквивалентно, квантовом выходе - количестве фотоэлектронов на один фотон падающего излучения.

Спектральная характеристика (СХ) ПЗС определяется, причём мультипликативно, двумя факторами - прохождение света через электродную структуру и фотогенерация, вызванная поглощением света непосредственно в полупроводнике (внутренний квантовый выход). Начнём с последнего.

Поглощение света в полупроводнике описывается коэффициентом поглощения - величиной, обратной длине, на которой интенсивность излучения падает в е раз. Далее, фотогенерацию вызывают только фотоны с энергией, превышающей ширину запрещённой зоны - около 1,2 эВ (что соответствует длине волны чуть больше 1,05 мкм - это ближний ИК диапазон). Фотоны с большей длиной волны просто не поглощаются и соответственно не дают вклада в выходной сигнал, а длина ~1,05 мкм оказывается красной границей фотоэффекта в кремнии. При уменьшении длины волны коэффициент поглощения постепенно растёт; так, при l = 1 мкм свет затухает в е раз на 100 мкм, при l = 0,7 мкм (красный цвет) - на 5 мкм, а при l = 0,5 мкм (зелено-голубой) - на 1 мкм. Что же из этого следует?

Вспомним, что глубина обеднённого слоя (глубина, на которую распространяется электрическое поле затвора вглубь полупроводника) - около 5 мкм. Ясно, что для света, который целиком поглощается внутри этого слоя (при длине волны менее примерно 0,6 мкм), внутренний квантовый выход будет почти 100%, так как происходит мгновенное разделение электронно-дырочных пар электрическим полем. Для более длинных волн значительная доля фотонов поглощается в нейтральной подложке, откуда носители могут попасть в потенциальные ямы только за счёт тепловой диффузии - на что шансов тем меньше, чем глубже родился каждый конкретный электрон. Надо ещё учесть, что сама подложка по своим свойствам неоднородна. Так, практически все западные приборы изготавливаются на эпитаксиальных подложках с толщиной эпитаксиального слоя 10-12 мкм, а российские ПЗС - на подложках с внутренним геттерированием (это специальный процесс, при котором дефекты кристаллической решётки загоняются вглубь подложки, так что поверхностный слой толщиной около 20 мкм становится свободным от дефектов). В обоих этих случаях время жизни свободных носителей вне поверхностного слоя чрезвычайно мало, и они просто не успевают попасть в потенциальные ямы. Это ещё больше снижает внутренний квантовый выход ПЗС для длинноволнового участка спектра.

Для очень коротких длин волн (менее 270 нм) энергия фотонов достаточна для генерации двух электронно-дырочных пар, так что для них внутренний квантовый выход, на первый взгляд, может превышать 100%. Увы, нет в мире совершенства, и граница раздела окисел-кремний - яркий тому пример. При коротких длинах волн коэффициент поглощения становится настолько большим, а длина поглощения настолько маленькой, что становится существенным вклад поверхностной рекомбинации, то есть только что рождённые пары успевают рекомбинировать, не успев разделиться. Так что в области коротких длин волн внутренний квантовый выход тоже падает, хотя и не до нуля.

 

Рис.8. Сечение трёхфазного ПЗС с электродами из поликристаллического кремния (вверху, а) и с виртуальной фазой (внизу, б). Около половины площади ячейки свободно от поликремния


Поговорим о пропускании света электродной структурой. Как можно судить по рис. 8а, где схематично изображено сечение ПЗС, свет, попадая в полупроводник, проходит через несколько слоёв с различными оптическими характеристиками, так что неизбежна его интерференция, благо, что толщина этих слоёв соизмерима с длиной волны. И действительно, СХ ПЗС довольно причудлива. Далее, поликристаллический кремний, из которого сделаны электроды, совершенно непрозрачен в области длин волн до 430-450 нм (синий и фиолетовый цвета). В итоге СХ обычного трёхфазного ПЗС с поликремниевыми затворами выглядит так, как показано на рис. 6 красной линией.

 

 Рис. 9. Спектральные характеристики абсолютного квантового выхода: обычного ПЗС (красный), ПЗС с люминофорным покрытием (желтый), с освещением с обратной стороны подложки (зеленый) и с виртуальной фазой (синий).


Использование фотодиодов в матрицах МП и СКП значительно улучшает СХ ПЗС, особенно в коротковолновой части спектра, поскольку уходят проблемы, связанные с электродами. Именно это обстоятельство позволяет таким приборам успешно работать в вещательных и бытовых камерах цветного телевидения. В камерах прикладного и научного направления, где доминируют всё же приборы с КП, применяются совершенно другие подходы.

Самый простой - нанесение люминофора, специального вещества, прозрачного для длинных волн, но преобразующего коротковолновый свет в кванты с большей длиной волны. Этот приём позволяет расширить СХ ПЗС в синюю и УФ область спектра (на рис. 9) показано жёлтым цветом), не затрагивая, впрочем, средне- и длинноволновую часть СХ. Кроме того, в ряде применений, особенно в астрономии, требуется глубокое охлаждение приборов (о необходимости чего мы ещё поговорим), которое люминофорное покрытие не выдерживает. Второй способ, пожалуй, самый трудоёмкий и дорогой, но именно он позволяет добиться фантастических результатов. Состоит он в том, что кристалл ПЗС, уже после изготовления, утоньшается до толщины 10 мкм и менее (и это при размере кристалла в несколько сантиметров!), а свет падает на обратную сторону подложки, специальным образом обработанную. При столь тонкой подложке носители успевают добраться до потенциальных ям (напомним, что они простираются на глубину до 5 мкм), а полное отсутствие каких бы то ни было электродов гарантирует, что практически весь свет, за исключением потерь на отражение, проникает в кремний.

Квантовая эффективность таких матриц (зелёная кривая на рис. 6) достигает иногда 90%, а спектральный диапазон простирается от 180 до 950 нм. Именно такие матрицы, несмотря на дороговизну (порой несколько десятков тысяч долларов - хотя, что это за деньги, если сам телескоп стоит сотни миллионов!), применяются в большинстве серьёзных астрономических проектов, включая космический телескоп "Хаббл" или недавно построенную Южную Европейскую Обсерваторию в Чили с несколькими 8-м телескопами.

И, наконец, третий способ улучшения спектральных характеристик ПЗС - виртуальная фаза, способ, предложенный в 1980 году Ярославом Хинечеком, в то время работавшим в фирме Texas Instruments, для американского проекта Galileo по запуску космического аппарата к Юпитеру. Суть этого способа в том, что один из электродов обычного ПЗС заменяется на мелкий слой p-типа (виртуальный затвор) непосредственно на поверхности кремния, замкнутый на стоп каналы (сам Хинечек модифицировал двухфазный ПЗС; автору ближе ПЗС с виртуальной фазой, полученные из обычных трёхфазных - см. рис. 5б). Доза канала под виртуальным затвором делается больше, чем под тактовыми затворами. Вспомним то, что говорилось про ПЗС со скрытым каналом по поводу фиксации поверхностного потенциала и зависимости глубины потенциальной ямы от дозы легирования канала. Структура с виртуальным затвором, замкнутым на подложку, с точки зрения канала переноса не отличается от состояния фиксации в обычном ПЗС со скрытым каналом. Если к тому же выбрать дозу легирования канала в области виртуальной ямы надлежащим образом, то потенциал канала в ней будет средним между ямой и барьером под тактовыми электродами, так что условия для тактируемого переноса заряда сохраняются.

Достоинства такой структуры несомненны. По сравнению с обычными ПЗС, в ней около половины площади ячейки свободны от поликремния, отсюда высокая чувствительность в синей и УФ области спектра (теоретически даже и до мягкого рентгена). Вместе с тем достигается она при освещении с фронтальной стороны подложки, что явно положительным образом сказывается на их цене. Ещё ПЗС с виртуальной фазой по принципу действия относятся к приборам с МРР, но об этом ниже, там, где речь пойдёт о темновом токе.

Я не мог не упомянуть здесь ПЗС с виртуальной фазой, поскольку именно этим типом приборов я имею честь заниматься уже многие годы (я и не обещал быть беспристрастным...). Эти приборы, в частности, уже много лет используются в системах ориентации российских космических аппаратов (звёздные датчики), и именно на них в 1986 г. впервые в мире было получено детальное изображение кометы Галлея (проект ВЕГА), которое даже попало на почтовые марки некоторых стран.

Поговорим теперь о других параметрах ПЗС (про неэффективность переноса и спектральные характеристики мы уже поговорили). Здесь будут обсуждаться как сами параметры, так и те меры, которые применяются для их улучшения.

Параметры ПЗС

Темновой ток

Как уже упоминалось, темновой ток - это результат спонтанной генерации электронно-дырочных пар и есть явление неизбежное, однако бороться с ним можно. Дело в том, что теоретическая величина темнового тока для кремния (если брать в расчёт только прямую генерацию через запрещённую зону) крайне мала, и на самом деле темновой ток в ПЗС (как и обратные токи в других кремниевых приборах) определяется двустадийной генерацией через промежуточные энергетические уровни в запрещённой зоне. Понятно, что чем меньше концентрация этих уровней - а она определяется качеством исходного кремния, чистотой реактивов и степенью совершенства технологии - тем меньше темновой ток. Понятно также, что граница раздела, где этих уровней заведомо много, даёт заметно больший вклад в темновой ток, чем объём. И вот здесь-то и надо вспомнить про МРР-приборы. Их отличие от обычных ПЗС в том, что под одной из тактовых фаз доза канала увеличена, соответственно и потенциал канала при фиксации будет выше. Таким образом, даже если на всех фазах напряжение на затворе таково, что поверхностный потенциал фиксирован, в канале переноса потенциальный рельеф сохраняется, а значит, возможно, локализованное накопление зарядовых пакетов. Поверхность же замкнута на подложку и исключается из процесса генерации темнового тока.

В настоящее время типовые значения темнового тока для лучших западных ПЗС составляют при комнатной температуре доли нА/см2, или несколько сотен (иногда тысяч) электронов на ячейку в секунду. И если для вещательного и бытового ТВ (время накопления 20 или 40 мс) такой темновой ток незаметен, то для научных применений, где регистрируются потоки в десяток фотонов на элемент, даже столь низкий темновой ток неприемлем. Действительно, время накопления в малокадровых системах, скажем, флуоресцентной микроскопии достигает минут, а в астрономии, когда нужно получить спектр звезды 20-й величины (совершенно типовое дело), - часов. В этом случае на помощь приходит охлаждение матриц. Как всякий термодинамический процесс, темновой ток сильно зависит от абсолютной температуры; принято считать, что при уменьшении температуры на каждые 7-8 градусов он уменьшается вдвое. Для глубокого охлаждения (в астрономических системах) используются азотные криостаты, где матрицы охлаждаются до -100оС. Для более простых систем применяется термоэлектронное охлаждение с использованием батарей Пельтье, которые способны обеспечить перепад в 70оС при подаче напряжения в 5-6 В, так что температура кристалла при комнатной наружной оказывается около -40оС, а темновой ток снижается до ~1 электрона на ячейку в секунду. Эти батареи столь компактны, что монтируются непосредственно в один корпус вместе с кристаллом ПЗС. Такие охлаждаемые приборы широко выпускаются как в США (например, фирмой SITe Technology или Hamamatsu Photonics) и в Европе (EEV, Великобритания), так и в России (фирма "Электрон-Оптроник", С.-Петербург).

Ну и, наконец, в цифровых системах на ПЗС, поскольку характеристика его отличается высокой линейностью, можно просто запоминать темновой сигнал (при данной температуре и данном времени накопления), а затем вычитать его из результирующего.




2019-07-03 270 Обсуждений (0)
Параметры и характеристики ПЗС 0.00 из 5.00 0 оценок









Обсуждение в статье: Параметры и характеристики ПЗС

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (270)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)