Мегаобучалка Главная | О нас | Обратная связь


ГЛАВА 1. ИЗМЕРЕНИЕ И ОЦЕНКА ХИМИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ



2019-07-03 196 Обсуждений (0)
ГЛАВА 1. ИЗМЕРЕНИЕ И ОЦЕНКА ХИМИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ 0.00 из 5.00 0 оценок




Введение

 

С точки зрения загрязнения воздух непромышленных помещений обладает некоторыми особенностями, отличающими его от наружного, или атмосферного, воздуха и воздушной среды промышленных объектов. Помимо загрязнителей, содержащихся в атмосферном воздухе, воздух помещений содержит загрязнители, вырабатываемые конструктивными материалами здания, а также являющимися результатом деятельности внутри помещения. Концентрация загрязнителей в воздухе помещений обычно такая же, как в атмосферном воздухе, или ниже, и зависит от качества вентиляции; загрязнители, вырабатываемые конструктивными материалами, обычно отличаются от тех, что содержатся в атмосферном воздухе, и их концентрация может быть гораздо выше, в то время как загрязнители, являющиеся результатом деятельности внутри помещения, зависят от рода деятельности и могут совпадать по концентрации с теми, что содержатся в атмосферном воздухе, например СО и .

По этой причине количество загрязнителей, обнаруживаемых в воздухе непромышленных помещений, довольно велико, и уровень концентрации их незначителен (за исключением случаев наличия мощного источника загрязнения); он зависит от атмосферных и климатических условий, типа и характеристик здания, способа вентиляции и рода деятельности внутри помещений.


ГЛАВА 1. ИЗМЕРЕНИЕ И ОЦЕНКА ХИМИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ

 

Методы, доступные для отбора проб воздуха в помещении и для их анализа, можно разделить на две группы: методы, в которых используются непосредственные измерения, и те, в которых собираются пробы для последующего анализа.

В методах, основанных на непосредственных измерениях, взятие пробы воздуха и измерение концентрации загрязнителей происходит одновременно; они быстры, и результаты измерений появляются мгновенно, позволяя получить точные данные при небольших затратах. Эта группа включает в себя колориметрические трубки и специальные контрольно-измерительные устройства.

Принцип действия колориметрических трубок основан на изменении цвета определенного реагента при вступлении в контакт с тем или иным загрязнителем. Наибольшее распространение получили трубки с твердым реагентом, через которые при помощи ручного насоса прокачивается воздух. Оценка качества воздуха помещений при помощи колориметрических трубок применима только для предварительных измерений или выявления спорадических выбросов, поскольку их чувствительность, как правило, низка, за исключением чувствительности к некоторым загрязнителям типа СО или , концентрация которых в воздухе помещений достаточно высока. Важно помнить, что точность этого метода низка, и на результат измерения могут влиять другие загрязнители.

В случае применения специальных контрольно-измерительных устройств, обнаружение загрязнителей основано на их физических, электрических, тепловых, электромагнитных и хемоэлектромагнитных свойствах. Большинство этих контрольно-измерительных устройств могут использоваться для длительных и кратковременных измерений и дают возможность составить карту загрязненности данного помещения. Их точность различна у разных производителей, и они требуют периодической калибровки посредством измерения регулируемых составов воздуха или аттестованных газовых смесей. Точность и чувствительность контрольно-измерительных устройств постоянно повышается. Многие из них имеют встроенную память для хранение результатов измерений, которые затем могут быть загружены в компьютер для анализа и создания баз данных.

Методы сбора проб и анализа можно разделить на активные (или динамические) и пассивные.

В активных системах воздух продувается через специальные устройства, в которых собираются и концентрируются загрязнители. Это делается при помощи фильтров, твердых адсорбентов, абсорбирующих или активных растворов, которые помещаются в барботер, или которыми пропитывается пористый материал. Затем анализируют сам загрязнитель или продукты его реакции. Для анализа проб воздуха активным методом необходим собирающий загрязнитель фиксатор, насос, чтобы прокачивать воздух через систему, и устройство для измерения объема - непосредственно или на основе измерений потока и времени.

Значения потока и объема воздуха берутся из справочников или определяются в результате предыдущих измерений и зависят от количества и типа абсорбента или адсорбента, от конкретного загрязнителя, от метода забора проб (эмиссионный или имиссионный), а также от состояния воздушной среды (влажность, температура, давление). Эффективность сбора загрязнителя повышается при уменьшении объема пробы и при увеличении количества фиксатора.

Другой активный метод отбора проб заключается в непосредственном сборе образцов воздуха в специальный мешок или любой другой инертный и герметичный контейнер. Этот метод применим для некоторых газов (СО, , , ) и полезен при предварительных измерениях, когда неизвестен тип загрязнителя. Недостаток его заключается в том, что без концентрации образца чувствительность приборов может оказаться недостаточной, и потребуются дополнительные исследования в лаборатории.
Пассивные системы основаны на диффузии или осаждении загрязнителей на ту или иную основу, в качестве которой может выступать адсорбент - чистый или пропитанный определенным реагентом. Эти системы более удобны и просты в эксплуатации, чем активные. Они не требуют насосов для отбора проб и высококвалифицированного персонала. Однако сбор образца может занимать длительное время, и результаты будут отражать усредненную концентрацию того или иного загрязнителя. Пассивный метод неприменим для измерения пиковых концентраций; для этих целей должны использоваться активные системы. Для правильной эксплуатации пассивных систем необходимо знать скорость сбора каждого загрязнителя, которая зависит от скорости диффузии газа или пара и конструкции измерительного прибора.

Процедуры анализа

Количество загрязнителей в воздухе помещений велико, а концентрация из низка. Доступная методология анализа основана на адаптации методов, используемых для контроля качества атмосферы и воздуха промышленных объектов. Приспособление этих методов к анализу воздуха непромышленных помещений включает в себя изменение диапазона измеряемых величин, увеличение времени выборки и использование большего количества абсорбентов или адсорбентов. Все эти изменения приемлемы только в том случае, если они не ведут к потере достоверности или точности. Анализ смеси загрязнителей обычно дорог, а полученные результаты неточны. Во многих случаях удается получить лишь распределение загрязнителей, которое отражает уровень загрязнения во время сбора проб по отношению к чистому воздуху, атмосферному воздуху, или воздуху других помещений. Для построения распределения загрязнителей используются контрольно-измерительные устройства первичного анализа, хотя в некоторых случаях они могут оказаться слишком громоздкими или шумными. В настоящее время разрабатываются более компактные и бесшумные приборы, имеющие более высокую точность и чувствительность. Таблица 1 отражает современное состояние методов, используемых для определения концентрации различных типов загрязнителей.

 

Таблица.1 Методы, используемые для анализа химических загрязнителей

Загрязняющее вещество Измерительные приборы с прямым считыванием* Отбор образцов и анализ
Угарный газ + +
Углекислый газ + +
Двуокись азота + +
Формальдегид - +
Сернистый газ + +
Озон + +
VOCs + +
Пестициды - +
Взвешенные частицы + +

 

* ++ = наиболее часто используемый; + = реже используемый; - = неприменимый.

Анализ газов

Для анализа газов наиболее часто применяются активные методы, основанные на использовании твердых адсорбентов и абсорбирующих жидкостей или на непосредственном отборе образцов воздуха при помощи специальных мешков или других инертных и герметичных контейнеров.
Для предотвращения потери части пробы и повышения точности измерений объем образца должен быть меньше, а количество абсорбента или адсорбента больше, чем для других типов загрязнителей. Необходимо также принять меры предосторожности при транспортировке и хранении образца (поддерживать низкую температуру) и минимизировать время до его анализа. В настоящее время для анализа газов широко применяются методы непосредственных измерений, поскольку современные контрольно-измерительные устройства стали гораздо точнее и чувствительнее. Из-за простоты их применения, а также качества и удобства выдаваемой ими информации они все больше вытесняют традиционные методы анализа. В таблице 2 представлены минимальные уровни обнаружения различных газов для разных методов отбора проб и анализа.

 

Таблица 2. Минимальные уровни обнаружения некоторых газов с использованием измерительных приборов для оценки качества воздуха помещений

Загрязняющий агент Измерительные приборы первичного анализа* Отбор образцов и активный/пассивный анализ
Угарный газ 1,0 0,05
Двуокись азота 2 1,5 (1 неделя)**
Озон 4 5,0
Формальдегид   5,0 (1 неделя)**

* Приборы для измерения углекислого газа с использованием инфракрасной спектроскопии всегда достаточно чувствительны.

** Пассивные контрольно-измерительные устройства (продолжительность воздействия). Эти газы - наиболее распространенные загрязнители воздуха помещений. Их концентрация измеряется непосредственно при помощи контрольно-измерительных устройств электрохимическим или инфракрасным методом. Правда, инфракрасные детекторы обладают меньшей точностью. Измерения могут также производиться путем отбора проб в инертные герметичные контейнеры и последующего анализа образцов методами газовой хроматографии с детектором ионизации пламени, когда газы в результате каталитической реакции сначала превращаются в метан. Детекторы теплопроводности обладают достаточной чувствительностью для измерения близких к норме концентраций .

Двуокись азота

Для обнаружения двуокиси азота, , в воздухе помещений были разработаны специальные методы с использованием пассивных контрольно-измерительных устройств и взятием проб воздуха для последующего анализа, однако для них характерны проблемы чувствительности, которые в будущем, вероятно, будут разрешены. Лучшим из известных методов является метод трубки Палмеза (Palmes tube), имеющий чувствительность на уровне 300 (миллиардных долей по объему). Для непромышленных помещений необходимо производить выборку, как минимум, в течение пяти дней, чтобы достичь уровня обнаружения 1,5 , который в три раза превышает нулевой уровень для недельной экспозиции. Были разработаны также портативные контрольно-измерительных устройств измерения в режиме реального времени, принцип действия которых основан на хемилюминисцентной реакции между и специальным реагентом люминолом, но результаты, полученные данным методом, в значительной степени зависят от температуры, а их точность и линейность зависит от характеристик используемого люминола. Контрольно-измерительные устройства с электрохимическими датчиками обладают лучшей чувствительностью, но на их показания влияет присутствие веществ, содержащих серу (Freixa 1993).

Диоксид серы

Для измерения концентрации диоксида серы, , в воздухе помещений применяется спектрофотометрический метод. Образец воздуха пропускается через раствор калия тетрохлоромеркуриата (tetrachloromercuriate), в результате чего образуется устойчивое соединение, которое после реакции с параросанилином (pararosaniline) подвергается спектрофотометрическому анализу. Другие способы используют метод пламенной фотометрии и измерение пульсаций ультрафиолетового излучения, а также проведение дополнительных измерений перед спектральным анализом. Эти способы обнаружения диоксида серы не подходят для анализа воздуха помещений из-за отсутствия необходимых методик и из-за необходимости вентиляционной системы для удаления вырабатываемых при их работе газов. Поскольку в последнее время выделение значительно уменьшилось, диоксид серы больше не рассматривается в качестве существенного загрязнителя воздуха помещений, и поэтому усовершенствование приборов для его обнаружения продвинулось не очень далеко. Тем не менее, на рынке имеются переносные измерительные приборы для обнаружения , принцип действия которых основан на детектировании параросанилина (pararosaniline) (Freixa 1993).

Озон

Озон, , может быть обнаружен только в воздухе специальных помещений, где происходит его непрерывная генерация, так как он быстро разрушается. Его концентрация измеряется непосредственно при помощи колориметрических трубок или методами хемилюминисценции. Его также можно обнаружить посредством методов, используемых в промышленной гигиене, поскольку они легко адаптируются к условиям непромышленных помещений. Образец, полученный при помощи абсорбирующего раствора йодида калия, затем подвергается спектрофотометрическому анализу.

Формальдегид

Формальдегид является одним из значимых загрязнителей воздуха в помещении. Из-за его химических и токсичных свойств рекомендуется проводить индивидуальный анализ его присутствия. Существуют различные методы определения присутствия формальдегида в воздухе, и все они основаны на отборе проб для последующего анализа с использованием активного связующего вещества или диффузии. Наиболее подходящий способ связывания определяется на основе типа пробы (эмиссионная или иммиссионная) и чувствительности аналитического метода. Традиционные методы основаны на пропускании образца воздуха через дистиллированную воду или 1% раствор бисульфата натрия при температуре с последующим его анализом спектрофлюорометрическими методами. Храниться образцы должны также при температуре , а на результаты измерения могут влиять вещества, содержащиеся в табачном дыме. Для анализа воздуха помещений чаще используются активные системы или методы сбора загрязнителей посредством твердых адсорбентов. Основой всех их служит фильтр или пропитанное реагентом типа бисульфата натрия или 2-4-дифенилгидразина твердое вещество. Методы, в основе которых лежит диффузия загрязнителя, наряду с другими преимуществами обладают большей чувствительностью, поскольку время, требуемое для получения образца, у них дольше (Freixa 1993).



2019-07-03 196 Обсуждений (0)
ГЛАВА 1. ИЗМЕРЕНИЕ И ОЦЕНКА ХИМИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ 0.00 из 5.00 0 оценок









Обсуждение в статье: ГЛАВА 1. ИЗМЕРЕНИЕ И ОЦЕНКА ХИМИЧЕСКИХ ЗАГРЯЗНИТЕЛЕЙ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (196)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)