Мегаобучалка Главная | О нас | Обратная связь


Схема мультиплексирования SDH



2019-07-03 270 Обсуждений (0)
Схема мультиплексирования SDH 0.00 из 5.00 0 оценок




 

Операции мультиплексирования и ввода/вывода выполняются при помощи виртуальных контейнеров (Virtual Container, VC), в которых блоки данных PDH можно транспортировать через сеть SDH. Кроме блоков данных PDH в виртуальный контейнер помещается еще некоторая служебная информация, в частности заголовок пути контейнера (Path OverHead, POH). В нем размещается статистическая информация о процессе прохождении контейнера вдоль пути от его начальной до конечной точки (сообщения об ошибках), а также другие служебные данные, например индикатор установления соединения между конечными точками. В результате размер виртуального контейнера больше, чем соответствующая нагрузка PDH, которую он переносит. Например, виртуальный контейнер VC-12 помимо 32 байт данных потока E-1 содержит еще 3 байта служебной информации.

В технологии SDH определено несколько типов виртуальных контейнеров для транспортировки основных типов блоков данных PDH: VC-11 (1,5 Мбит/c), VC-12 (2 Мбит/с), VC-2 (6 Мбит/с), VC-3 (34/45 Мбит/с) и VC-4 (140 Мбит/c).

Виртуальные контейнеры — единица коммутации мультиплексоров SDH. На каждом мультиплексоре имеется таблица соединений (называемая также таблицей кросс-соединений), где указано, например, что контейнер VC-12 порта P1 связан с контейнером VC-12 порта P5, а контейнер VC-3 порта P8 связан с контейнером VC-3 порта P9. Таблицу соединений формирует администратор сети с помощью системы управления или управляющего терминала на каждом мультиплексоре так, чтобы обеспечить сквозной путь между конечными точками сети, к которым подключено пользовательское оборудование.

Для совмещения в рамках одной сети синхронной передачи кадров STM-N с асинхронным характером переносимых этими кадрами пользовательских данных PDH в технологии SDH применяются указатели (pointers). Концепция указателей — ключевая в технологии SDH, она заменяет принятое в PDH выравнивание скоростей асинхронных источников посредством дополнительных бит. Указатель определяет текущее положение виртуального контейнера в структуре более высокого уровня — трибутарном блоке (Tributary Unit, TU) или административном блоке (Administrative Unit, AU). Его применение позволяет виртуальному контейнеру «смещаться» в определенных пределах внутри своего трибутарного или административного блока, положение которого, в свою очередь, в кадре фиксировано. Собственно, основное отличие этих блоков от виртуального контейнера заключается в наличии дополнительного поля указателя. Именно благодаря системе указателей мультиплексор находит положение пользовательских данных в синхронном потоке байт кадров STM-N и на лету извлекает их оттуда, чего механизм мультиплексирования, примененный в PDH, делать не позволяет.

Схема мультиплексирования SDH предоставляет разнообразные возможности по объединению пользовательских потоков PDH. Например, для кадра STM-1 можно реализовать такие варианты:

а)1 поток E4;

б) 63 потока E1;

в) 1 поток E3 и 42 потока E1.

Местоположение виртуальных контейнеров задается не жестко, а с помощью системы указателей (pointers). Техника применения указателей является ключевой в технологии SONET/SDH. Благодаря использованию указателей обеспечивается синхронную передачу байт кадров с асинхронным характером вставляемых и удаляемых пользовательских данных.

Определенным образом кадры STS-n всегда образуют синхронный поток байтов, но с помощью изменения значения соответствующего указателя можно вставить и извлечь из этого потока байты низкоскоростного канала, не выполняя полного демультиплексирования высокоскоростного канала.

В технологии SONET/SDH существует гибкая, но достаточно сложная схема использования поля данных кадров STS-n. Сложность этой схемы в том, что нужно "уложить" в кадр наиболее рациональным способом мозаику из виртуальных контейнеров разного уровня. Поэтому в технологии SONET/SDH стандартизовано шесть типов виртуальных контейнеров, которые хорошо сочетаются друг с другом при образовании кадра STS-n.

На физическом уровне технологии SONET/SDH используется кодирование бит информации с помощью модуляции света. Для кодирования сигнала применяется метод NRZ (благодаря внешней тактовой частоте его плохие само синхронизирующие свойства недостатком не являются).

Отказоустойчивость сети SONET/SDH встроена в ее основные протоколы. Этот механизм называется автоматическим защитным переключением - Automatic Protection Switching, APS.

Существуют два способа его работы. В первом способе защита осуществляется по схеме 1:1. Для каждого рабочего волокна (и обслуживающего его порта) назначается резервное волокно. Во втором способе, называемом 1:n, для защиты n волокон назначается только одно защитное волокно.

В схеме защиты 1:1 данные передаются как по рабочему, так и по резервному волокну. При выявлении ошибок принимающий мультиплексор сообщает передающему, какое волокно должно быть рабочим. Обычно при защите 1:1 используется схема двух колец, похожая на двойные кольца FDDI, но только с одновременной передачей данных в противоположных направлениях.

 

Типовые топологии

 

Рассмотрим топологию сетей SDH. Существует базовый набор стандартных топологий. Ниже рассмотрены такие базовые топологии.

Топология "точка-точка".

Сегмент сети, связывающий два узла A и B, или топология "точка - точка", является наиболее простым примером базовой топологии SDH сети (рис.3.6.). Она может быть реализована с помощью терминальных мультиплексоров ТМ, как по схеме без резирвирования канала приёма/передачи, так и по схеме со стопроцентным резервированием типа 1+1, использующей основной и резервный электрические или оптические агрегатные выходы (каналы приёма/передачи).

Рис. 3.6.Топология "точка-точка", реализованная с использованием ТМ.

Топология "последовательная линейная цепь".

Эта базовая топология используется тогда, когда интенсивность трафика в сети не так велика и существует необходимость ответвлений в ряде точек линии, где могут вводиться каналы доступа. Она может быть представлена либо в виде простой последовательной линейной цепи без резервирования, как на рис.3.7., либо более сложной цепью с резервированием типа 1+1, как на рис.3.8. Последний вариант топологии часто называют "упрощённым кольцом".

Рис. 3.7.Топология "последовательная линейная цепь", реализованная на ТМ и TDM.

 

Рис. 3.8.Топология "последовательная линейная цепь" типа "упрощённое кольцо" с защитой 1+1.

Топология "звезда", реализующая функцию концентратора.

В этой топологии один из удалённых узлов сети, связанный с центром коммутации или узлом сети SDH на центральном кольце, играет роль концентратора, или хаба, где часть трафика может быть выведена на терминалы пользователя, тогда как оставшаяся его часть может быть распределена по другим удалённым узлам (рис.3.9.)

Рис. 3.9.Топология "звезда" c мультиплексором в качестве концентратора.

Топология "кольцо".

Эта топология (рис.3.10.) широко используется для построения SDH сетей первых двух уровней SDH иерархии (155 и 622 Мбит/с). Основное преимущество этой топологии - лёгкость организации защиты типа 1+1, благодаря наличию в синхронных мультиплексорах SMUX двух пар оптических каналов приёма/передачи: восток - запад, дающих возможность формирования двойного кольца со встречными потоками.

 

Рис. 3.10.Топология "кольцо" c защитой 1+1.



2019-07-03 270 Обсуждений (0)
Схема мультиплексирования SDH 0.00 из 5.00 0 оценок









Обсуждение в статье: Схема мультиплексирования SDH

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (270)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)