Мегаобучалка Главная | О нас | Обратная связь


КЛАСС СОБСТВЕННО СЛИЗЕВИКИ – MYX OMYCETES



2019-07-03 276 Обсуждений (0)
КЛАСС СОБСТВЕННО СЛИЗЕВИКИ – MYX OMYCETES 0.00 из 5.00 0 оценок




ПОДКЛАСС MYXOGASTEROMYCETIDAE  

Название myxomycetes получили от Греческих слов myxa (слизь) и myketes (грибы), и сначала использовалось в 1833, чтобы описать группу. Однако, некоторые биологи чувствовали, что слизевики более животно-подобны, называя их Mycetezoa, от Греческого mykes (гриба) и zoon (животное).[2]

Myxomycetes, обычно называемые слизевиками, являются одними из наиболее экстраординарных организмов , т.к. они проявляют свойства и, грибов и животных.

ЖИЗНЕННЫЙ ЦИКЛ

       Жизненный цикл начинается со споры (A), образованной в спорофоре. При соответствующей влажности и температурных условиях, спора прорастет и произведет 1-4 протопласта. (B) Протопласты (C), выходящие через трещины или поры в стенках споры, могут быть флагеллятными клетками или бесформенными миксамебами. Если влажность достаточная формируются флагеллятные клетки. В сухой окружающей среде - миксамебы. Обычно флагеллятные клетки появляются прямо из споры и могут превращаться в миксамебы. В случае неблагоприятных условий роста, они могут стать микрокистами (D), чтобы выжить в течение более длинных периодов времени. Слияние 2 совместимых клеток (E), или флагеллятных или миксамеб (плазмагамия и кариогамия), заканчивается образованием диплоидной зиготы (F и G). После периода питания и роста, зигота развивается в одноклеточную, многоядерную структуру (H), плазмодий. При неблагоприятных условиях может образоваться другая стойкая структура, склероций (I). При благоприятных условиях склероций может преобразовываться в плазмодий (J). Зрелый плазмодий (K) производит один или большее количество споросодержащих структур, называемых плодовыми телами(L).

       Все структуры, кроме миксамеб и флагеллятных клеток, диплоидны. Редукционное деление происходит при их образовании .

Некоторый миксомицеты развиваются без полового размножения, их жизненный цикл является полностью диплоидным. Некоторая виды могут использовать оба типа жизненных циклов или переходить от одного типа к другому.


Классификация

Отдел Myxomycota

Класс Myxomycetes

Подкласс Myxogasteromycetidae[3](рис. См. Приложение I)

ПОРЯДОК

СЕМЕЙСТВО

РОДЫ
Echinsteliales

Echinosteliaceae

Echinostelium
 

Clastodermataceae

Barbeyella Clastoderma
Liceales

Liceaceae

Licea
 

Reticulariaceae

Dictydiaethalium Lycogala Reticularia Tubifera

 

Cribrariaceae Cribraria Lindbladia

Trichiales

Dianemaceae Calomyxa Dianema Listerella Minakatella

 

Trichiaceae Arcyria Arcyodes Calonema Cornuvia Hemitrichia Metatrichia Oligonema Perichaena Prototrichia Trichia

Stemonitales

Stemonitaceae Amurochaete Brefeldia Colloderma Comatricha Diachea Diacheopsis Elaeomyxa Enerthenema Lamproderma Leptoderma Macbrideola Paradiacheopsis Stemonitis

Physarales

Physaraceae Badhamia Badhamiopsis Cienkowskia Craterium Erionema Fuligo Leocarpus Physarum Protophysarum

 

Didymiaceae Diderma Didymium Lepidoderma Mucilago
       

2.3. Сбор в природе

 

В основном слизевики встречаются в природе в стадии хрупкого плодового тела. Чтобы собирать плодоносящие тела необходимо удалить часть подложки, на которой находится спорофор карманным ножом. Чтобы не повредить экземпляр надо использовать пластиковые или картонные контейнеры. Спичечные коробки идеальны для этой цели. Маленькие растительные частицы (листья, ветви папоротника, или мхи) могут быть помещены в контейнер на подушечке для сохранения в процессе транспортировки. Если сбор - плазмодии, в контейнер необходимо поместить увлажненное бумажное полотенце, или фильтровальную бумагу, чтобы развитие слизевика продолжалось. Каждый контейнер должен быть помечен, чтобы было известно, где и когда был проведен сбор.[2]

В лаборатории позвольте зрелым экземплярам высохнуть, удаляя влагу, конденсирующуюся на крышке контейнера. После высыхания, экземпляр можно вклеить в помеченную коробку для постоянного хранения. Ярлык должен содержать информацию о видовой принадлежности, подложке на который произошло плодоношение, местоположение, дату и имя собравшего. Можно указать порядковый номер и имя определившего.

Чтобы предотвратить повреждение насекомыми, коллекции могут быть помещены в домашний морозильник на нескольких дней.

 

2.4. Выращивание культур. Метод влажных камер.

 

Плодовые тела миксомицетов могут быть собраны в течение лета и начала осени в умеренных районах мира. Однако, наблюдение и сбор коллекций миксомицетов не ограничены этими сезонами и могут иметь место и в другие сезоны, при использовании простой техники выращивания культуры. Этот метод культуры был развит в 1933, для наблюдения за ростом водоросли Protococcus на коре дерева. Эта техника начиная с того времени стала использовться и в изучении миксомицетов.

2.4.1.Сбор коры

Чтобы приготовить влажные камеры, нужно сначала собрать маленькие (1-2 см) кусочки наружной коры с живого дерева с использованием ножа или отвертки. (Другие материалы типа листьев, прутов и экскрементов травоядных животных могут также использоваться и будут обсуждены позже.) При удалении коры, надо постараться не повредить дерево. Деревья типа дуба (Quercus), ясенья (Fraxinus), вяза (Ulmus), клена (Acer) и гикори (Carya) с грубой корой производительнее чем деревья с гладкой корой. Главным образом, кора хвои не очень производительная; исключение - можжевельник (Juniperus), хотя кора сосны используется очень часто. После сбора кусочки коры должны быть помещены в помеченные мешки. Вообще, пластиковые мешки хороши для краткосрочного хранения. Для хранения более длительное время, чем несколько дней, должны использоваться бумажные мешки.

2.4.2.Подготовка Влажных камер

Любой контейнер, который может быть закрыт крышкой, можно использовать, как влажную камеру. Одноразовая пластмассовая чашка Петри – подходящй контейнер . Она может быть выброшена после использования. Спорофоры миксомицетов могут развиваться на крышке или стенке влажной камеры. Когда используется пластмассовая чашка Петри, часть пластмассы с плодоносящим телом можно просто вырезать из посуды. Тем не менее неплохи и стеклянные чашки Петри.

Кусок фильтровальной бумаги или бумажного полотенца необходимо обрезать по размеру камеры и поместить в основание . Далее необходимо поместить образцы (кора, листья, или пруты) поверх фильтровальной бумаги так, чтобы они закрыли основание, но не накладывались друг на друга. Кора должна быть помещена внешней поверхностью вверх. Необходимо добавить достаточное количество дистиллированной воды чтобы образец был закрыт. Затем, закройте контейнер, и отложите его на сутки, чтобы вода впиталась.

Контейнер должен быть помечен типом образца и датой. Восковой карандаш или маркер идеальны для этой цели. На следующий день, вода должна быть слита и культуры должны остаться в рассеяном свете при комнатной температуре.

2.4.3.Просмотр Культур

Культуры должны быть проверены после нескольких дней и затем просматриваться регулярно каждые несколько дней по крайней мере две или три недели. Культуры могут сохраняться в течение нескольких месяцев, так как некоторый миксомицеты не развиваются в течение нескольких недель или даже дольше. Однако, некоторые миксомицеты с очень маленькими спорофорами, включая вид Echinostelium, иногда появляются в пределах от 24 до 48 часов.

Добавлять воду к культурам не надо. Это может привести к неправильному развитию спорофоров, а также к развитию плесени (различнах грибов), которые способны подавить развитие миксомицетов, даже уничтожить их.

Культуры должны быть исследованы тщательно, чтобы обнаружить все плодоносящие тела. Несколько виды могут развиваться в единственной культуре. Культуры можно проверять, используя лупу с увеличениеи Х16-54 или, если доступно, бинокулярная лупа. При проверке культур можно не снимать крышку с контейнера, но часто это необходимо сделать, так как она создает блики.

       Если в чашки все-таки была добавлена вода, то найденные спорофоры необходимо удалять из культуры и фиксировать, иначе спорофор может быть уничтожен грибами. В сухих камерах такой опасности нет.

 

 

Экология Myxomycetes

 

Хотя развитие, генетика, географическое распределение, физиология и ультраструктура миксомицетов - обычные предметы исследования, относительно немного известно об их экологии. Большинство исследований экологии слизевиков было основано на наблюдениях репродуктивной стадии в жизненном цикле. Эта стадия обычно наблюдается в природе. Микроскопические амебофлагеллятные клетки (одноклеточная пищевая стадия) легко наблюдаются в лаборатории, но практически невозможно наблюдать их в полевых условиях. Плазмодий (многоядерная пищевая стадия), хотя макроскопический - обычно не готов к споруляции.

Миксомицеты - типичные обитатели наземных экосистем. Для развития и образования спорофоров они используют разнообразные субстраты: подстилка, разлага­ющаяся древесина, кора деревьев, помет растительноядных животных, а также любую другую органику растительного происхождения. Считается, что большинство видов не приуро­чено к определенному типу субстрата. Тем не менее некоторые виды и даже более крупные таксоны достаточно узко специ­ализированы, как например р. Cribraria специализированный к древесине хвойных, а также р. Didymium, большинство пред­ставителей которого предпочитают развиваться на подстилке. Однако до сих пор нет данных о приуроченности отдельного вида миксомицета к определенной породе дерева или роду в целом. Дроздович (Drozdowicz, 1977), изучал субстратное распределение мик­сомицетов на различных древесных породах и отметил, что различия касаются только того к какому классу относится дерево — голосеменным или покрытосеменным.[4]

Как отмечалось многими авторами (Новожилов, 1993; Мир растений, 1991; Stephenson, 1994), наибольшее количество видов ассоциировано с древесиной. На сегодняшний день из­вестно около тысячи видов миксомицетов (Ainthwors, Bisby, 1995), из них около 70% видов в той или иной степени при­урочено к древесине. Однако, эта цифра приведена только для бореальных лесов. В растительных сообществах, где отсутствует или плохо развита подстилка, а также другие типы субстратов эта цифра может доходить до 90 и более процентов.

2.5.1. Трофические Стадии

Обе питающиеся стадии миксомицетов обычно существуют в микросредах обитания, где популяции бактерий высоки. Бактерии, вероятно, главный источник продовольствия для миксомицетных амебофлагеллятных клеток. Escherichia coli и Enterobactor aerogenes использовались как пищевой ресурс для лабораторных исследований. Амебофлагеллятные клетки, как известно, питаются различными спорами грибов (Гильберт 1928). Разумно предположить, что, так как эти клетки можно вырастить на химически определенных питательных средах в лаборатории, прямое поглощение растворенных органических питательных веществ происходит и в природе.

Плазмодии, как известно, питаются разнообразными бактериями (Cohen 1941), но не все бактерии подходят для развития плазмодия, и некоторые могут даже прекращать рост. Остатки бактериальных клеток в пищеварительных вакуолях могут быть вытеснены в стебелек при споруляции (Blackwell 1974). Используя электронную микроскопию были обнаружены бактериальные споры и другие частицы в стебельках семи видов миксомицетов.[2]

В природе плазмодии поглощают различные типы пищи, включая водорослевые клетки, дрожжи и споры, вегетативные гифы и (в некоторых случаях) плодоносящие тела грибов (Lister 1888, Говард и Curie 1932). Плазмодии также питаются плазмодиями других видов (McManus 1962). Кроме того, плазмодий способен абсорбировать питательные вещества непосредственно из окружающей среды, и некоторые виды могут показывать внеклеточное переваривание растительного и микробного материала.

Плазмодии хорошо приспособлены, чтобы использовать условия среды, мигрируя через отверстия диаметром всего в несколько микронов, плазмодии могут проникать через крошечные отверстия в разлагающейся древесине. Некоторые плазмодии требуют большего количества влаги, чем другие. Тип афаноплазмодия проводит большую часть своего существования в пределах подложки, в отличие от фанероплазмодия, который лучше приспособлен к жизни на поверхности подложки. Фанероплазмодий имеет хорошо развитую слизистую оболочку, которая служит, чтобы защитить его от потери воды; афаноплазмодий не имеет такой оболочки (Alexopoulos 1960).

2.5.2. Связи с субстратом

Хотя плазмодий может мигрировать далеко от его исходного субстрата, наблюдения, и сбор указывают, что некоторые виды миксомицетов имеет тенденцию закреплятся за определенными типами подложек (Pratt 1934, Gray и Alexopolous 1968, и Stephenson 1988). Некоторые виды почти всегда обитают на коре или древесине, а другие на опаде и разлагающихся растениях. Причины для специфики выбора субстрата неизвестны (Eliasson 1981, Blackwell 1984), однако, они могут, вероятно, быть приписаны физическому и биотическому факторам (Stephenson 1988).

2.5.3. Сезон плодоношения

Сезон образования спорофоров для большинства видов миксомицетов в умеренных областях(регионах) начинается в начале лета и продолжается всю осень. В то время как некоторые виды образуют споры в течение полного периода, другие плодоносят сезонно. На востоке Северной Америке, Lycogala epidendrum может быть найдена с раннего лета до поздней осени.

Ceratiomyxa fruticulosais –плодоносит летом и не встречается осенью. Metatrichia vesparium –изредко встречается и осенью (Stephenson с 1988). В умеренных областях, myxomycetes не развиваются в течение зимних месяцев, хотя некоторые виды могут появляться в течение периодов оттепелей. В тропических районах, myxomycetes остаются активными круглый год, но их плодоношение не особенно обильно кроме некоторых периодов (Lazo 1966).

Главные факторы, воздействующие на сезонное распределение - влажность и температура (Alexopoulos 1968). Некоторые разновидности имеют температурные предпочтение. Blackwell и Gilbertson (1984) сообщили, что культуры влажной камеры Physarum straminipes из Пустыни Sonoran юго-запада Соединенных Штатов плодоносили более быстро при 20o C, чем при 30o C. В течение более раннего полевого изучения, выполненного в той же самой области, P. straminipes никогда не были собраны летом; они появлялись в течение зимних месяцев. Температура, кажется, наиболее важный фактор, основанный на данных, представленных коллекциями, сделанными равномерно в течение годичного периода в двух местах изучения в Бразилии (Maimoni-Rodella и Gottsberger 1980). Они нашли, что даже в присутствии адекватной влажности, myxomycetes были редки, когда температуры были ниже 14o C.

Хотя температура и влажность - важные факторы в определении сезонного распределения для myxomycetes с ограниченными плодоносящими периодами, наше знание этого аспекта экологии все еще не полно.

       Как показывают проведенные в неко­торых районах Среднего и Северного Урала, из тех видов, что предпочитают образовывать плодовые тела на древесине 65% используют также другие субстраты, и лишь 35% могут быть обнаружены только на древесине, причем 84% всех ксилофильных видов обитают как на древесине хвойных, так и листвен­ных пород, 11% в большей степени приурочены к хвойным, 5% — к лиственным.[4]

2.5.4. Миксомицеты и насекомые

Myxomycetes обеспечивают пищу, убежище, и место размножения для различных разновидностей насекомых. Самые обычные партнеры myxomycetes в умеренных лесах - жуки. Члены семейства Leiodidae неоднократно собирались с плодоносящими тела и плазмодиями. Жуки играют роль в рассеивании спор. Большинство жуков найдено со зрелыми плодоносящими телами, плазмодии - также важный источник продовольствия (Blackwell 1984, Wheeler 1987). Различные виды летающих насекомых - обычные партнеры myxomycetes (Buxton 1954). Разновидности мух, связанных с myxomycetes, принадлежат семействам Mycetophilidae, Scaridae и Drosophilidae. Муха Epicypta testata, наиболее часто находится в сотрудничестве с такой разновидностью как и Lycogala epidendrum. Sellier и Chassain (1976) сообщили, что взрослая муха иногда откладывает яйца около плазмодия Enteridium lycoperdon и Tubifera ferruginosa. Когда появляются личинки, они кормятся на плазмодии до окукливания, которое происходит одновременно со спорообразованием у миксомицетов. Когда взрослая муха появляется, споры прочно удерживаются на ее теле и разносятся ею.[2]

2.5.5. Миксомицеты и грибы

Плодоносящие тела миксомицетов могут служить как органическая подложка для различных разновидностей грибов. Эти грибы - прежде всего hyphomycetes, хотя некоторые - аскомицеты. Многие из hyphomycetes - фактически вегетативные стадии аскомицетов. (Stephenson и Studlar 1985).

2. 5.6.Значение для человека

Так как их существование неизвестно большинству людей, myxomycetes имеет небольшое воздействие на человека. Лишь рассмотренные выше плазмодиофоровые могут вредить хозяйственным культурам. Некоторые миксомицеты употребляются в пищу.

 

2.6.Географическое Распределение

 

Слизевики наиболее обычны в экосистемах леса, где имеется разнообразные материала подложки типа коры, пней и опавшего листа. Однако, myxomycetes могут находится, где есть растительные останки. Существуют водные виды миксомицетов. Didymium difforme способен к прохождению полного жизненного цикла под водой. Плазмодии наблюдаются в чашечках водных цветков.

Arcyria cinerea, A. denudata, Certatiomyxa fruticulosa, Comatricha typhoides, Lycogala epidendrum, и Stemonitis fusca - некоторые из наиболее часто встречающихся видов.

2.6.1. Myxomycetes, связанный с определенными Средами обитания

2.6.1.1 Миксомицеты, обитающие на коре деревьев

Миксомицеты одни из постоянных обитателей разлагаю­щейся древесины. Их обилие и видовое разнообразие на этом субстрате довольно высоко. Это может объясняться наличием достаточно разнообразного материала для питания — бактерии, высокомолеку­лярные продукты разложения древесины, споры и гифы гри­бов, водоросли и др. С другой стороны разлагающаяся древе­сина способна достаточно долго удерживать влагу, необходи­мую для жизнедеятельности трофических стадий — миксамеб и плазмодия, температурные колебания внутри древесины от­носительно небольшие в течении суток, что также немаловажно. Древесина содержит все биогенные элементы, накопленные в течении жизни деревом, необходимые для нормального суще­ствования организма. В процессе разложения древесины гри­бами эти элементы высвобождаются и становятся доступными для потребления. Все это создает довольно благоприятный микроклимат для жизнедеятельности миксомицетов, особенно проявляющийся, как нам кажется на третьей стадии разложе­ния. Еще одной возможной причиной высокого обилия миксо­мицетов на древесине в целом может являться отсутствие кон­куренции со стороны других организмов. Большое количество видов, которое можно обнаружить на одном субстрате свиде­тельствует также и о низкой конкуренции среди самих миксо­мицетов или использовании разными видами разных трофичес­ких ресурсов, предлагаемых разлагающейся древесиной.[4]

2.6.1.2. Myxomycetes обитающие на листовой подстилке.

Diderma effusum, D. testaceum, Didymium melanospermum, Lamproderma scintillans, Physarum bivalve и P. cinereum склонны к листовой подстилке. Хотя Arcyria cinerea найден на всех типах листьев, Stemonitis herbatica, кажется, предпочитает листву широколиственных деревьев, в то время как Cribraria microcarpa предпочитает хвойный опад.[2]

2.6.1.3. Экскременты как микросреда обитания

Хотя количество данных ограничено, более чем 80 видов копрофильных myxomycetes были зарегистрированы, с несколькими видами, встречающимися исключительно на экскрементах. Их роль в разложении экскрементов к настоящему времени неизвестна. Из-за высокой влажности, обилия пищи богатства и больших популяций микроорганизмов, экскременты создают подходящую среду обитания для myxomycetes.

Относительно необычные в умеренных лесах, копрофильные миксомицеты, кажется, чаще встречаются в прериях.

2.6.1.4.Почва как Микросреда обитания

Thom и Raper (1930), Warcup (1950) и Indira (1968) изолировали миксомицетов от почвы. Раньше, Feest и Madelin (1985, 1988a, 1988b) демонстрировали метод определения плазмодий-образующих частиц в образцах почвы. Myxomycetes - обычные жители большинства почв. Didymium spp. Кажется, наиболее обильный и широко распространенный слизевик в почвах (Feest и Madelin 1988a).

2.7.Структурные характеристики Myxomycetes

Плазмодий. Отличительным признаком миксогастриевых служит свободноживущий многоядерный плазмодий с амебоидным движением. Отсутствие клеточной стенки у плазмодия создает благоприятные условия для фагоцитоза и пиноцитоза и, следовательно, внутрикле­точного пищеварения, т.е. голозойного способа пи­тания (Reyter, Chastellier, 1977; Madelin, 1984). Плазмодий может активно мигрировать и обладает различными положительными и отрицательными такси­сами (Konijn, Koevenig, 1971; Hader, Schrecken-bach, 1984). Способ движения аналогичен способу передвижения некоторых саркодовых. Из плазмодия миксомицетов выделен сократительный белок актин, участвующий в организации движения (Hatano et, al. , 1980).[3]

На основании наблюдений за плазмодиями раз­ных видов в условиях культуры было выделено 3 ос­новных типа: протоплазмодий, афаноплазмодий, фанероплазмодий (Alexopoulos, 1960). На ранних этапах развития все 3 типа имеют значительное морфологи­ческое сходство, исчезающее на более поздних ста­диях. Протоплазмодий имеет микроскопические разме­ры и характеризуется отсутствием циркулирующих то­ков протоплазмы. Этот тип плазмодия характерен для представителей порядков Echinosttlialts и Liceales. Однако если протоплазмодии эхиностелиевых не обладают способностью к слиянию ( Haskins,1978), то протоплазмодий видов лициевых способны сливаться друг с другом (Wollman, Alexopoulos, 1967).

Афаноплазмодий характерен для видов порядков Stemonitalеs. Его отличает отсутствие развитого слизевого чехла, имеющегося у других типов плазмо­дия, а также наличие особой стадии „коралла" перед началом формирования спорофоров; кроме того, этот тип плазмодия менее устойчив к обезвоживанию, чем остальмые ( Collins, 1979).

Фанероплазнодий наиболее обычен для видов по­рядка Physarales (Rammeloo, 1976), но он имеется и у некоторых видов порядка Licealee (McManus, l966). Этот тип плазмодия окрашен в различные от­тенки красного, желтого, розового, коричневого, черного цветов. В последнее время появились сведе­ния о достаточной стабильности этого признака в условиях культуры ( Coll ins, 1079). Однако в целом таксономическая ценность этого признака низкая.

В отличие от афаноплазмодия фанероплазмодий, так же как и протоплазнодий, может обитать в менее влажной среде. Стадия „коралла" также отсутствует, а при образовании спорофоров фанероплазмодий, как и протоплазмодий эхиностелиевых, может претерпе­вать плазмотомию. Весьма вероятно, что это сходст­во может быть связано с филогенетической близостью Echinosteliales и Physarales.

В последнее время стали выделять четвертый тип плазмодия — плазмодий видов порядка Trichiales, занимающий по своей морфологии промежуточное по­ложение между афаноплазмодием и фанероплаэмодием. Он характеризуется наличием токов протоплазмы, но отличается от последнего меньшими размерами и сла­бой пигментацией (Indira, 1964; Rammeloo, 1976). При неблагоприятных условиях для роста и питания плазмодий превращается в склероций.

У некоторых видов с крупным фанероплазмодием склероций сохраняет его форму, у большинства же видов образуются маленькие склероции (макроцисты), таккак плазмодий предварительно дробится. Афаноплазмодий и протоплазмодий не образуют склероция, а только комплекс макроцист, покрытый общим чехлом (Aldrich, Blackwell, 1976). Стенки склероция, так же как и слизевой чехол плазмодия, состоят из фибриллярного матрикса, упакованного более плотно в склероции и менее — в плазмодии. Однако слизевой чехол состоит в основном из галактозы, тогда как стенки склероция — преимущественно из галактозамина (McCormic et al. , 1970).

Для миксогастриевых наряду с наличием многоядерного плазмодия характерен особый тип спороношения, при котором плазмодий превращается в спорофор. Структуры этой стадии обладают наиболее важ­ными таксономическими признаками. К ним относятся гипоталлус или подслоек, который образуется как основание спорофора; перидий, покрывающий споровую массу и имеющий вид либо тонкой, прозрачной или непрозрачной мембраны, либо плотной оболочки, он может быть одно- или многослойным; колонка (колумелла) — стерильная часть спорангия, может быть непосредственным продолжением ножки или дериватом нижней части спорофора; ложная колонка (псевдоколумелла ) — агрегат извести или узелков капиллиция в плоскости спорофора; капиллиций — система нитей, трубочек, пленок, служащая для рассеивания спор. Кроме этих признаков в таксономии миксогастриевых используется еще ряд признаков структур спорофоров, подробный анализ которых будет дан ни­же.

Из спор, сформировавшихся в полости спорофора, выходят зооспоры или миксамебы . Эти две формы одной и той жe стадии способны перехо­дить одна в другую путем редукции или образования жгутика. Обычно этот процесс происходит при пере­ходе зоопор из жидкой в более сухую среду и наобо­рот. Как миксамебы, так и зооспоры способны к амебоидному движению и фагоцитозу. Ползущая зооспора имеет заднюю псевдоподию и периодически образует передний цитостом, в который длинным жгутом „загоняет" бактерии, поступающие затем в пищевари­тельную вакуоль. Кроме того, зооспора может пере­двигаться как типичный жгутиконосец. При неблаго­приятных условиях зооспоры и миксамебы инцистируются, образуя микроцисты. Их роль примерно та же, что и у конидий некоторых грибов. В условиях лабораторной культуры можно индуцировать переход в микроцисты, переводя их на среду бедную или лишен­ную аминокислот, некоторых солей, удлинняя или, наоборот, уменьшая световой режим и т.д. (Madelin. 1984). Зооспоры сливаются и образуют зиготу, из которой формируется плазмодий. Известны 2 варианта жизненного цикла: гетероталлический и апомиктический. Наличие гомоталлизма пока с очевидностью не подтверждено ( Collins,1979).

Сведения о строении, биологии отдельных стадий жизненного цикла приводятся в ряде обзоров и мо­нографий (Gray, Alexopoulos, 1968;Collins, 1979;Goodman, 1980; Sauer, 1982; Madelin. 1984).

Таксономия миксомицетов основывается преиму­щественно на признаках окончательно сформировав­шихся спорофоров, так как систематик имеет дело именно с этой стадией как в поле, так и при изуче­нии гербарных образцов.

Тип спорофоров. Спорофоры миксогастриевых отли­чаются большим разнообразием. При переходе в гене­ративную фазу плазмодий превращается в спорофор одного из четырех типов: плазмодиокарп, эталий, псевдоэталий, спорангий. Встречаются виды, обла­дающие спорофорами промежуточного строения, а так­же спорофорами нескольких типов в одной колонии.

Плазнодиокарп — наиболее простой тип спорофо­ра , когда весь плазмодий покрывается оболочкой и, не меняя формы, целиком преобразуется в спорофор. Вследствие этого плазмодиокарпы всегда сидячие, среди них встречаются ветвящиеся, сетчатые, повто­ряющие форму плазмодия в период превращения в спо­рофор. Плазмодиокарпы встречаются у представителей порядков Liceales, Trichiales, Physarales и не найдены среди Stemo-nitales, Echinosteliales.

При образовании спорангия плазмодий обычно рас­падается на множество частей, каждая из которых развивается в отдельный спорангий характерной фор­мы, цвета и структуры. Этот тип спорофора встре­чается во всех порядках и семействах класса.

Эталии — подушковидные образования, формирую­щиеся из ветвящихся плазмодиев, у которых внутрен­ние ответвления образуют спорангии, в то время как протоплазма внешних (наружных) ответвлений разру­шается и преобразуется в кортекс, окружающий весь комплекс спорофоров. Остатки боковых стенок спо­рангиев иногда сохраняются в виде псевдокапилли-ция.

Характерно, что виды, обладающие эталиями, как правило, никогда не образуют других типов спорофо­ров. Эталии встречаются только у видов порядков Liceales. Physarales, Stemonitales и не встречают­ся в порядках Trichiales и Echinos teliales.

Псевдоэталии состоят из множества спорангиев, плотно прилегающих друг к другу, но без потери индивидуальности благодаря сохранившимся боковым стенкам, по крайней мере на ранних стадиях развития. Псевдоэталии могут быть, так же как и спорангии, сидячими или на ножках и встречаются в порядках Liceales, Physarales, реже Trichiales, Stemonitales.

Таким образом, если рассматривать класс в це­лом, то на этом уровне тип спорофора образует не­прерывную гамму переходов от одной формы к другой. Наибольшим разнообразием в этом смысле обладает порядок Physarales , где встречаются практически все типы спорофоров. Однако в некоторых случаях этот признак достаточно стабилен на уровне се­мейств. Так, представители семейства Reticularia сеае (пор. Liceales) имеют преимущественно эталии, а виды Liceaceae этого же порядка — спорангии и редко плазмодиокарпы.

Форма спорангия — признак, характеризующийся большим разнообразием. Спорангии могут быть сидя­чими или на ножке, шаровидными, цилиндрическими, подушковидными, яйцевидными, дисковидными, много-лопастными, сжатыми с боков, конусовидными и т.д. В пределах каждой из перечисленных основных форм можно выделить множество отклонений. Например, разветвленные спорангии отличаются различной фор­мой ветвления, сферические спорангии часто бывают несколько вытянуты или приплюснуты, что придает спорангию в целом другой вид. Форма спорангия, несмотря на сильную изменчивость, даже в пределах вида — признак с высоким таксономическим весом. Он имеет ограниченный предел варьирования в рамках одного вида и может быть использован как критерий видового уровня в сочетании с другими признаками.

Окраска спорофора. Значение этого признака в пределах высших таксонов различно. Для примера можно сравнить семейства Triсhiaceae(Trichiales), Stemonitaceae (Ctemonitales), Physaraceae (Physrales). В сем. Tric hiaceae преобладает красная, жел­тая и коричневая окраска. Красный цвет различных оттенков встречается наиболее часто у видов р.Arcyria, у одного вида Тг ichiа —— Т. Floriformis и у монотипного рода Metatrichia (M. vesparium). Желтый цвет преобладает в родах Тrichia, Hemitrichia. Для сем. Trichiaceae цвет спорофора имеет только видовое значение, причем в пределах одного вида этот признак варьирует незначительно.

В сем. Stemonitaceae преобладает черный и кори­чневый цвет спорофора, что может служитькак родо­вым, так и видовым признаком. Например, для предс­тавителей р. Lamproderma характерен металлический или радужный оттенок в окраске спорангия, а для видов р. Comatricha и Stemonitis —— коричневый.

В сем. Physaraceae цвет — сильно варьирующий признак даже на уровне вида. Это связано прежде всего с различием в количестве и распределении из­вести по поверхности перидия, что в свою очередь зависит от условий окружающей среды. Так, напри­мер, у широко распространенного Physaraum viride окраска спорангия зависит от качества откладывае­мых крупинок извести. Окраска может быть оранже­во-красной , желтой, зеленоватой или даже серой с металлическим блеском. Эта гамма переходов может быть представлена у спорангиев одной колонии. Та­ким образом, цвет спорофоров — видовой диагности­ческий признак, который можно использовать только с учетом всех возможных вариаций, количество ко­торых неодинаково в разных таксонах. Из-за сильной изменчивости этот признак можно применять только совместно с другими признаками на уровне вида.

Морфогенез, структура, окраска и форма ножки спорофора. На основании наблюдений за развитием ножки спорофора некоторые авторы разделяют мик-согастриевых на 2 подкласса: Stemonitomycetidae и Myxogastromycetidae (Ross, 1957, 1973). Для перво­го характерен эпигипоталлический тип развития спорофора, а для второго — субгипоталлический. При эпигипоталлическом развитии ножка — вырост гипоталлуса, а при субгипоталлическом она формируется из тех же участков протоплазмы  плазмодия, что и перидий. Если морфогенез ножки действительно про­текает двумя различными путями, то это — признак большого таксономического веса, и с его помощью можно решать вопрос о месте в системе даже такого рода с неясным положением, как Diachea. Однако для окончательного решения необходимы дальнейшие ис­следования особенно на ультраструктурном уровне.

Структура ножки — хороший признак на уровне рода. Например, у видов Comatricha она заполнена фибриллярным материалом,  у Macbfideola — полая, а у Stemonitis — полая или заполнена аморфным мате­риалом. В порядке Trichiales этот признак может иметь значение на видовом уровне. Окраска ножки может иметь значение какнауровне рода, так и вида. Форма ножки, а также ее отсутствие или наличие, может служить диагностическим признаком на уровне рода или вида, хотя из-за вариабельности к этому признаку надо относиться с осторожностью. Напри­мер, у Trichia varia имеется вся гамма переходов от спорангиев с хорошо выраженной ножкой до  сидя­чих.

Тип растрескивания спорофора при созревании. Наиболее простой способ раскрытия спорофора выра­жается в неупорядоченном растрескивании перидия. Этот способ часто встречается у видов с плазмодиокарпом и значительно реже у видов со спорангиями. Более специализированный тип растрескивания — разрушение только апикального конца спорофора, при этом растрескивание может осуществляться про­дольной щелью (L icea biforis), кольцевой щелью (L. parasitica) , кольцевой щелью с образованием кры­шечки (L. kleistobolus). Наконец, у некоторых ви­дов Licea растрескивание происходит вдоль спе­циальных швов на перидии. Роды, у которых способ растрескивания перидия является однимиз объеди­няющих признаков, отличаются гомогенностью своего состава: например, Cribraria, Dictydium. в Cribrariaceae, Dictydiaethalium  в Reticulariaceae, Craterium в Physa rасе ae и т.д. Следовательно, этот признак может быть ключевым на уровне рода, так как он отличается малой изменчивостью и легко на­блюдается у гербаризированных образцов. В не­которых случаях, например для видов Licea, он может быть диагностическим на видовом уровне.

Тип капиллиция. Настоящий капиллиций присутст­вует во всех порядках эндоспоровых миксомицетов. Он образуется как система вакуолей различной формы в протоплазме плазмодия в период превращения пос­леднего в спорофор ( Gray, Alexopouios, 1968; Ellis et al., 1973; Keller et al., 1973; Gaither, 1974). У некоторых родов стемонитовых Comatricha, Stemonitis капиллиций формируется путем образования нитей, отходящих от ножки или колонки (Ross, 1973). Псевдокапиллиций встречается у большинства видов со спорофорани в виде эталиев или псевдоэталиев и, как правило, является остатком перидия бо­ковых стенок редуцированных спорангиев. Так, псев-докапиллиций имеется у видов сем. Reticulariaceae (Liceales) , а также у Fuligo, М uс ilа gо ( Pbys arales). Псевдокапиллиций Reticulariaceae представлен тяжами или перфорированными пластинками (Reticularia), скульптурированныни или гладкими трубочками неправильной формы (Lycogala), щетинками (Тubifеra) или утолщенными частями боковых стенок споран­гия , которые свешиваются с краев апикальных концов спорангиев в виде нитей и образуют каркас псевдоэталия (Dictydiaetalium). Сеточки Dictydium и Cribraria, очевидно, гомологичны псевдокапиллицию указанных родов.

Принято считать, что эволюция капиллиция и псевдокапиллиция шла в направлении интенсификации функции рассеивания спор путем усложнения структу­ры, .т.е. a priori предполагается селективное зна­чение этого признака (Ячевский, 1907; Martin, Alexopoulos, 1969). Однако нам кажется, что этот во­прос может быть решен только после специальных ис­следований. Пока же следует отметить, что среди Licea, Perichaena, Echinostelium и некоторых дру­гих родов имеются виды с частично редуцированным или полностью исчезнувшим капиллицием, причем, не­смотря на это, споры прекрасно распространяются после созревания. Изучение структуры капиллиция привело к изменению взглядов на положение некото­рых родов в системе. Так, электронно-микроскопи­ческие исследования показали, что капиллиций рода Minakatella полый, вследствие чего этот род логич­но перевести из Dianemaceae в Trichiaceae (Keller et а1., 1973), так же обстоит дело и с родом Рго totrichia (Ellis et а1. , 1973). У стемонитовых форма сети капиллиция, особенно его переферической част

2019-07-03 276 Обсуждений (0)
КЛАСС СОБСТВЕННО СЛИЗЕВИКИ – MYX OMYCETES 0.00 из 5.00 0 оценок









Обсуждение в статье: КЛАСС СОБСТВЕННО СЛИЗЕВИКИ – MYX OMYCETES

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему стероиды повышают давление?: Основных причин три...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Почему наличие хронического атрофического гастрита способствует возникновению и развитию опухоли желудка?



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (276)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.016 сек.)