Мегаобучалка Главная | О нас | Обратная связь


Раздел 2. Применение МГЭ в расчетах сопротивления



2019-07-03 187 Обсуждений (0)
Раздел 2. Применение МГЭ в расчетах сопротивления 0.00 из 5.00 0 оценок




Бипирамидальн ых свай

 

2.1. Алгоритм определения сопротивления бипирамидальных свай вертикальным нагрузкам с использованием МГЭ

 

Алгоритм расчета свай с применением МГЭ состоит из следующих основных этапов:

- дискретизация (разбивка) поверхности фундамента в вытрамбованном котловане (боковой поверхности и нижнего конца);

- определение коэффициентов матриц влияния сил действующих на поверхности фундамента на точки (узлы) дискретизации с использованием фундаментального решения Миндлина [41];

- формирование глобальной матрицы коэффициентов влияния и свободных членов (использования граничных условий);

- решение системы линейных алгебраических уравнений т. е. боковой поверхности и в плоскости нижнего конца фундамента;

- определение сопротивления грунта на боковые поверхности и под нижним концом фундамента в вытрамбованном котловане, а так же общего сопротивления фундамента при заданной осадке.

 

2.2. Расчет бипирамидальных свайна ЭВМ

 

2.2.1. Структура программы

Расчет сопротивления бипирамидальных свай при действии вертикальной нагрузки реализован на алгоритмическом языке Turbo Pascal [52] с помощью программы sv63m.pas, разработанной в Винницком государственном техническом университете. Программа sv63m.pas состоит из следующих процедур:

INPUT - эта процедура считывает исходные данные: геометрические характеристики фундамента, свойства грунта, заданную осадку фундамента.

MATR - вычисляются коэффициенты влияния матрицы [K]ij и свободные коэффициенты wedi.

CAUSP - решается система линейных алгебраических уравнений, в результате определяются неизвестные значения напряжений на боковой поверхности и под нижним концом фундамента.

OUTPUT - определяются касательные напряжения по боковой поверхности фундамента и нормальные напряжения под нижним концом, а так же радиальные напряжения действующие на боковую поверхность фундамента; определяются сосредоточенные силы действующие на i-х элементах боковой поверхности (силы трения) и нижнего конца фундамента - нормальные силы, сумма соответствующих сил дает значения общего усилия по боковой поверхности и под нижним концом, а их сумма общее сопротивление фундамента.

В программе используются следующие основные переменные:

NE1 := NEA + NEB + NEC - число граничных элементов на боковой поверхности фундамента;

NN1 - число граничных узлов на боковой поверхности фундамента;

NE2 - число граничных элементов в плоскости нижнего конца фундамента;

NN2 - число граничных узлов в плоскости нижнего конца фундамента;

NE3 - число граничных элементов по окружности фундамента;

NN3 - число граничных элементов по окружности фундамента;

ls1 - длина первого (верхнего) участка фундамента;

ls2 - длина второго (среднего) участка фундамента;

ls3 - длина третьего (нижнего) участка фундамента;

ls := ls1 + ls2 +ls3 - общая длина фундамента;

E - модуль деформации грунта;

mu - коэффициент Пуассона для грунта;

ed1 - вертикальные перемещения узлов боковой поверхности фундамента;

ed2 - горизонтальные перемещения узлов боковой поверхности фундамента;

ed3 - вертикальные перемещения узлов нижнего конца фундамента;

ar1 - радиус фундамента в верхнем сечении I первого участка;

ars - радиус фундамента в нижнем сечении среднего участка;

arN - величина радиуса фундамента на уровне нижнего конца фундамента;

NE = NE1 + NE2 - число граничных элементов на поверхности фундамента;

NK1 := NE1 + 1 - номер элемента матрицы К из

NEE = 2 * NE1 - номер элемента глобальной матрицы К

NC2 := NЕЕ +1 - номер элемента глобальной матрицы К.

tga1 - тангенс угла наклона боковой поверхности (грани) среднего участка фундамента;

tga2 - тангенс угла наклона боковой поверхности нижнего участка фундамента;

NEA - число граничных элементов на первом (верхнем) участке фундамента в вытрамбованном котловане;

NEB - число граничных элементов на втором участке фундамента;

NEC - число граничных элементов на третьем (нижнем) участке фундамента;

HH1 - шаг граничных узлов на первом участке;

HH2 - шаг граничных узлов на втором участке;

HH3 - шаг граничных узлов на третьем участке;

inz [i,1], inz [i,2] - связность граничных элементов боковой поверхности фундамента;

inc [i,1], inc [i,2] - связность элементов нижнего конца фундамента;

int [i,1], int [i,2] - связность элементов окружности по боковой поверхности фундамента и в плоскости нижнего конца фундамента (в точках источников);

 

 

2.2.2. Дискретизация боковой поверхности и нижнего конца фундамента

 

 

                                                             1

                                      1

                                                             2            I

                                          2

                                                             3

                                          3   

                                                   4

                                          4                             II

                                              5

                                          5

                                                    6

                                6

                                                   7

                                7  

                                          8

                                8   

                                          9

                                9                                      III

                                          10

                                              

                                          11

                                              

                                           12

                                              

                                          13

 

Рис. 2.1. Схема дискретизации боковой поверхности

                        фундамента в вытрамбованном котловане

 

    t, t

              1  2  3  4  5  6 (NN2)

    0                                     ar

              1 2 3 4 5 (NE2)

 

Рис. 2.2. Схема дискретизации нижнего конца фундамента

 

По длине фундамента в вытрамбованном котловане разбивается на три участка: верхний, средний (II), нижний (III) (рис. 2.1).

Количество граничных элементов задается в пределах каждого участка соответственно: NEA, NEB, NEC. Кроме того, для каждого участка задается длина (ls1, ls2, ls3). Угол наклона боковой поверхности участков II и III задан тангенсом угла наклона (tga1 и tga2) (см. рис. 2.3).

                                                            

                                 a1    

                                          a2       

Рис. 2.3.

 

При известных длине участков и количестве граничных элементов на них определяются коэффициенты i-узлов по длине фундамента:

Z[i] = Z[i-1] + HH1 - I участок;

Z[i] = Z[i-1] + HH2 - II участок;

Z[i] = Z[i-1] + HH3 - II участок,

где  - шаг граничных узлов на боковой поверхности фундамента в вытрамбованном котловане.

Узлы qi при обходе граничных элементов по окружности при заданном числе элементов NE3 и диапазона изменения угла q = 0...p определяем по формуле (см. рис. 2.4):

Ai = Ai-1 + H3,

где H3 = p/NE3 - шаг граничных узлов по окружности радиус которой, равен радиусу узла в точке приложения (j).

                                          p/2

 

                                           q      

                       p                      0

 

 

                                Рис. 2.4.

 

Радиус i-го узла на боковой поверхности фундамента в вытрамбованном котловане определим при известных его значениях ar1, ars, arN и тангенсах угла наклона tga1, tga2 по формуле

I участок

    ar[i]=ar1;

II участок

    ar[i]=ar[i-1] - tga1 * HH2;

III участок

    ar[i]=ar[i-1] - tga1 * HH3.

Координаты узлов в плоскости нижнего конца фундамента определим из следующих соотношений (см. рис. 2.5)

координат по длине фундамента Z[i]=ls;

(ls - общая длина фундамента в вытрамбованном котловане),

координат в радиальном направлении ar[i]=ar[i+1] + H2,

где H2 - шаг узлов, находящихся на нижнем конце фундамента.

 

                                                                      ar[NE1 + 1]     

                                                                       ar[NE1 + 2]

                       ar[NE + 1]=0   

Рис. 2.5. Схема узлов на нижнем конце фундамента

 

В работе использовано понятие "связность элементов". Так как производится дискретизация поверхности фундамента в условиях осессимметричной задачи, то граничные элементы представлены прямыми линиями находящимися между граничными узлами и каждый граничный элемент, определяется если задать узлы которые его ограничивают (рис. 2.6).

                                           2

                                 i

                              1

Рис. 2.6. Схема к понятию связности элементов

 

В данной работе для наглядности введены отдельно связности i-х элементов на боковой поверхности фундамента, в плоскости нижнего конца, и по окружности фундамента:

inz[i,1] inz[i,2],

inc[i,1] inc[i,2],

int[i,1] int[i,2],

где i - номер граничного элемента;

1 , 2 - номера граничных узлов, окружающих связывающий i-й элемент (см. рис. 2.6).

 

2.2.3. Формирование матрицы коэффициентов влияния и свободных членов СЛАУ

При формировании коэффициентов глобальной матрицы влияния, отражающих зависимость перемещения точки наблюдения (i), когда источник возмущения находится в точке (j) используется решение Миндлина для силы приложений внутри упругого полупространства. Иногда для зависимости, когда действует единичная сила, эти решения называют фундаментальными. Для вертикальной силы Рв=1 зависимость для перемещений KW, когда точка наблюдения имеет координаты В(z,r), а источник возмущения находится на оси Z (радиальная координата равна нулю) на глубине с, запишется в виде:

                 

                с   0 0

                                                              r

                с                 N

                               

                     Рв   

           x(с,0)      r        B(z,r)

                          Z            

Рис. 2.7. Схема обозначений в формуле Миндлина для сосредоточенной силы Рв, приложенной внутри упругого полупространства

(2.1)

где

                                                             (2.2)

                                                                        (2.3)

G - модуль сдвига грунта;

E - модуль деформации грунта;

v - коэффициент Пуассона грунта.

KW - вертикальное перемещение точки В при действии вертикальной силы Рв=1 в точке x(0,с).

Применение решения Миндлина к задаче о сопротивлении фундамента вертикальной нагрузке состоит в том, что точка приложения силы и точка наблюдения, в которой возникают вертикальные перемещения находятся на боковой поверхности или на нижнем конце. В связи с этим в формуле (2.1) выражения для R1 и R2 принимают вид:

                                                       (2.4)

                                                      (2.5)

где

                                   (2.6)

r - горизонтальная компонента расстояния от оси Z до точки B;

arc - горизонтальная компонента расстояния от оси Z до точки x;

r1 - горизонтальная компонента расстояния от точки В (точки наблюдения) до точки x (источник, место приложения силы);

R2 - расстояние от точки x' (фиктивный источник) до точки B;

R1 - расстояние от точки x (источник) до точки B.

                                                   x(с,arc)

                                 

                                                    

                           q              B(z,r)

 

                                                                       a

Рис. 2.8. Схема к определению координат точки приложения x(с,arc) и точки наблюдения B(z,r)

 

При определении коэффициентов влияния глобальной матрицы К учитываются различные варианты расположения источников (сил) и точек наблюдения.


              dc                           

 

                                          ·

 

 

Рис. 2.9. Схема к интегрированию решения Миндлина

 (матрица KSS)

 

- источники расположены на боковой поверхности фундамента и точки наблюдения так же находятся на боковой поверхности. Для наглядности рассмотрим фундамент в вытрамбованном котловане (см. рис. 2.1) боковая поверхность которого разбита на j элементов (j=1,NE1) и имеются точки наблюдения i, находящиеся посредине граничных элементов. При вычислении коэффициента влияния входящего в матрицу [KSS]ij осуществляется интегрирование решения Миндлина по окружности находящейся на глубине с и радиусом arc и интегрирования полученных значений решения по высоте j-го элемента. Таким образом элементы подматрицы [KSS]ij определяются

                                 (2.7)

где                            (2.8)

 

 

                                                   · i

 

                                                             j

                                 ·            

 

Рис. 2.10. Схема к интегрированию решения Миндлина

(матрица KBS)

- источники находятся на нижнем конце фундамента, а точки наблюдения на боковой поверхности. Количество элементов на нижнем конце j (1,NE2), а количество точек на боковой поверхности i=1,NE1. Интегрирование решения Миндлина выполняется по граничных элементам нижнего конца, представленных в виде кольца (рис. 2.10). При этом формируются коэффициенты подматрицы [KBS]ij

                       (2.9)

где             (2.10)

r - горизонтальная компонента расстояния от оси Z до точки В;

eps - горизонтальное расстояние от оси Z до точки источника x;

de - ширина граничного элемента j нижнего конца фундамента (ширина кольца).

                                                     

 

                                                             i

                                               · ·

 

 

Рис. 2.11. Схема к интегрированию решения Миндлина

(матрица KSB)

 

Если источники находятся на боковой поверхности фундамента, а точки наблюдения на нижнем конце. здесь формируются коэффициенты подматрицы [KSB]ij, i=1,NE2 j=1,NE1, которые учитывают влияние загружения боковой поверхности фундамента на перемещение элементов нижнего конца

                                (2.11)

где                          (2.12)

 

                                                             j (элемент j)

 

 

 

                                                       i (точка наблюдения i)

                                                · ·

 

 

Рис. 2.12. Схема к интегрированию решения Миндлина

матрицы (КВВ)

 

Последний вариант взаимодействия частей фундамента, когда источники находятся на нижнем конце фундамента, а точка наблюдения так же находится на нижнем конце фундамента.

Для вычисления коэффициентов влияния загружения элементов нижнего конца (j=1,NE2) на точки наблюдения, находящиеся посередине элементов нижнего конца, вычисляется двойной интервал

                               (2.13)

где                    

Если учитываются вертикальные перемещения грунта примыкающего к поверхности фундамента, только от действия вертикальных сил, приложенных на боковой поверхности (KSS, KSB) и на нижнем конце (KBS, KBB), то глобальная матрица К имеет вид

                                                  (2.14)

Система алгебраических уравнений для определения неизвестных напряжений на боковой поверхности и под нижним концом записывается следующим образом

                                      (2.15)

где fsb - неизвестные напряжения на поверхности фундамента;

    wed - вектор-столбец единичных перемещений узлов поверхности фундамента. В случае, если принять сваю абсолютно жесткой (т. е. несжимаемой), то перемещения всех узлов будут одинаковыми. В данной работе компоненты вектора-столбца wed принимались равными осадке фундамента при которой график зависимости "нагрузки-осадки" имеет прямолинейный вид. Как показывает анализ опытных данных для призматических свай такая осадка равна 0,01 м, для пирамидальных и фундаментов в вытрамбованном котловане - 0,015..0,020 м.

Если учитывать, что на боковую поверхность фундамента действуют радиальные напряжения s2, то глобальная матрица [K] будет содержать девять подматриц и уравнение равновесия (2.15) примет вид:

                                 (2.16)

где KRS - матрица, которая содержит коэффициенты влияния на вертикальные перемещения узлов боковой поверхности фундамента, при загружении элементов боковой поверхности радиальными напряжениями s2 (sigm2);

    KSU - матрица, коэффициенты которой отражают связь между горизонтальными перемещениями узлов боковой поверхности фундамента, когда боковая поверхность загружена вертикальными напряжениями;

    KRU - матрица содержащая коэффициенты влияния, которые отражают зависимость между горизонтальными перемещениями узлов боковой поверхности фундамента при загружении элементов боковой поверхности горизонтального напряжения s2;

    KBU - матрица, коэффициенты которой отражают зависимость горизонтальных перемещений узлов боковой поверхности фундамента при загружении элементов нижнего конца вертикальными напряжениями s1;

    KRB - матрица, коэффициенты которой отражают связь между вертикальными перемещениями узлов нижнего конца фундамента при загружении элементов боковой поверхности радиальными напряжениями s2.

    {fsb} - вектор-столбец, содержащий неизвестные: касательные напряжения на боковой поверхности фундамента t, горизонтальные напряжения на боковой поверхности фундамента s2 и вертикальные напряжения на нижнем конце фундамента s1;

           - вектор-столбец, содержащий заданные вертикальные перемещения узлов боковой поверхности фундамента  ed1; горизонтальные перемещения узлов боковой поверхности ed2 (если свая не сжимается ed2=0); вертикальные перемещения узлов нижнего конца фундамента ed3.

 Фундаментальное решение Миндлина в матрицах KRS и KRB имеет следующее выражение:

 

    (2.17)

где

                              (2.19)

                                           (2.20)

                       x = r×cosq - arc;                                  (2.21)

                       y = -r×sinq.                                           (2.22)

Коэффициенты матрицы KRS вычисляются с использованием фундаментального решения Миндлина KW3 и интегрирования выражения

                  (2.23)

     где    r = arz.                                             (2.24)

Коэффициенты матрицы KRB вычисляются с использованием фундаментального решения Миндлина KW3 и интегрирования выражения

                     (2.25)

где                           (2.26)

При вычислении коэффициентов матриц KSU и KBU используется решение Миндлина

                 (2.27)

где R1, R2, r1 - определяются по формулам (2.4), (2.5), (2.6).

Коэффициенты матрицы KSU вычисляются интегрированием выражения

                   (2.28)

где            (2.29)

Коэффициенты матрицы KBU равны интегралу

                     (2.30)

где            (2.31)

Фундаментальное решение Миндлина в матрице KRU определяется формулой

 

(2.32)

где R1, R2, x, y - определяются по формулам (2.19), (2.20), (2.21), (2.22).

 

Коэффициенты матрицы KRU определяются интегралом

                             (2.33)

где r = arz.                                                                        (2.34)

 

2.2.4. Определение напряжений на поверхности фундамента

Когда сформирована глобальная матрица К и задан вектор-столбец

                                               (2.35)         решается система алгебраических уравнений (2.16) методом Гаусса с помощью процедуры GAUSP, в результате получим значения напряжений t и s2 в узлах боковой поверхности и напряжение s1 в узлах нижнего конца фундамента.

 

2.2.5. Определение общего сопротивления фундамента

 

Усилия на элементах боковой поверхности фундамента получим

                                                             (2.36)

а усилия на элементах нижнего конца

                                                         (2.37)

Суммарное значение силы трения определяется

                                                                   (2.38)

а сила под нижним концом

                                                                   (2.39)

Общее сопротивление фундамента при заданной осадке r = ed1 равно

                                Рс = Рб + Р0;                                         (2.40)

Таким образом в результате применения изложенной методики расчета по методу граничных элементов с использованием решения Миндлина можно определить общее сопротивление фундамента в вытрамбованном котловане при заданной осадке.




2019-07-03 187 Обсуждений (0)
Раздел 2. Применение МГЭ в расчетах сопротивления 0.00 из 5.00 0 оценок









Обсуждение в статье: Раздел 2. Применение МГЭ в расчетах сопротивления

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (187)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)