Мегаобучалка Главная | О нас | Обратная связь


ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ



2019-07-03 277 Обсуждений (0)
ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ 0.00 из 5.00 0 оценок




Привод двустворчатых ворот. Наибольшее распространение на шлюзах нашей страны получили плоские, двустворчатые ворота. Основное тех­нологическое требование здесь сводится к правильному и безударному створению полотнищ. Для привода двустворчатых ворот на правом и ле­вом устоях камеры устанавливают по механизму, приводимому во враще­ние сворим электродвигателем.

Привод с асинхронными двигателями без регулирования скорости движения. В нем могут быть использованы асинхронные двигатели ка с фазным, так и с короткозамкнутым ротором. Структурная схема такого привода дана на (рисунке 23), а. Система отличается простотой и вы­сокой надежностью. Однако она обладает таким серьезным недостатком, как тяжелое протекание переходных процессов и невозможность управ­ления частотой вращения двигателей при створении ворот и входе их полотнищ в ниши.

Привод с асинхронными фазными двигателями с регулированием ско­рости движения изменением сопротивления цепи ротора.Этот широко применяемый на шлюзах приводах двустворчатых ворот отличается от предыдущего возможностью регулирования частоты вращения двигателей при маневрировании воротами и управлением в процессе разгона при пуске двигателей в ход. Структурная схема системы привода показана на (рисунке 23).

Такая система,используется в большинстве случаев в сочетании с кривошипно-шатунным механизмом, имеет очень тяжелую динамику при пуске из промежуточных положений, необходимость которого нередко возникает,например, из-за недостаточной согласованности скоростей движения створок ворот, различия продолжительности разгона двигате­лей при реостатном пуске и т. п. В случае применения других типов тяговых органов ( например, тросовых ) положение усугубляется еще тем, что в конце операций получаются недопустимо большие скорости движения створок и для исключения ударов возникает потребность в искусственном снижении частоты вращения двигателей.

Электропривод с тормозными генераторами. Привод двустворчатых ворот, рассмотренный выше, в операции закрытия работает на смягчен­ных характеристиках и в результате колебаний скорости движения не обеспечивает правильного створения ворот при различных изменениях нагрузки на левую и правую створки от ветра и волн. Кроме того, из-за сравнительно высокой скорости движения створок в конце опера­ции закрытия при наложении тормозов раньше времени в воротах оста­ется большая щель, а при наложении с опозданием получается удар створок.

Устранение отмеченных недостатков возможно при работе привода в течении большей части операции на жестких механических характерис­тиках, обеспечивающих сохранение скорости движении створок при ко­лебаниях нагрузки, и со значительным уменьшении скорости движения в конце операции перед наложением тормозов. Такие характеристики мож­но получить в системе с тормозным генераторами, включаемыми в конце операции для получении малой скорости движения . Тормозной генера­тор может быть отдельной электрической машиной постоянного или пе­ременного тока, навешанной на вал приводного двигателя и являющейся для него дополнительной нагрузкой.

Механическая характеристика системы с включенным генератором представляет собой кривую, полученную при различных частотах враще­ния сложения моментов приводного двигателя и тормозного генератора. Структурная схема такого привода дана на . На схеме показаны при­водные двигатели М1, М2, резисторы роторных цепей R1,R2 и тормозные генераторы ТГ1 и ТГ2. Изменением сопротивления цепи ротора асинх­ронного двигателя или тока возбуждения тормозного генератора полу­чают различные по жесткости и по граничной частоте вращения харак­теристики системы.

Электропривод двустворчатых ворот с тормозным генератором на шлюзах пока применяют ограниченно из-за большого числа машин, а значит, увеличенных габаритов и массы установки.

Электропривод с гидравлической передачей.Для привода двустворча­тых ворот гидропередачи стали применять в последнее десятилетие. Электрогидроприводы располагают на устоях камеры шлюза. Они предс­тавляют собой два самостоятельных агрегата, связанных с помощью системы управления. Структурная схема электрогидропривода двуствор­чатых ворот приведена на рисунке 7, г. К основным его элементам от­носятся: насосы Н1 и Н2 с приводными двигателями М1 и М2, золотни­ковые блоки управления З1, З2 и силовые гидроцилиндры Ц1, Ц2, штор­ки которых соединены со створками ворот. Регулирование скорости движения здесь также гидростатическое, с перепуском части рабочей жидкости в сливной бак Б1 или Б2 минуя гидроцилиндры. Электрогид­роприводы двустворчатых ворот зарекомендовали себя хорошо, однако необходимо решить еще целый ряд вопросов по улучшению регулирования скорости движения, динамики и защиты системы.

Электропривод с тиристорным управлением. Структурная схема такой системы приведена на рисунке 7, д. Она подобна рассмотренной выше схеме привода подъемно-опускных ворот.

Потенциальные возможности этой системы привода для двустворчатых ворот также еще предстоит раскрывать и доводить до совершенства вы­сокими требованиями, предъявляемыми к электроприводам шлюзов.

3.1.Привод с асинхронными двигателями без регулирования скорос­ти движения.На (рисунке 23) показана принципиальная схема главного тока, а на (рисунке 24) - схема цепей управления двустворчатых во­рот.

В данном примере для привода левой и правой створки ворот ис­пользованы асинхронные двигатели с фазным ротором М1 и М2, причем их пуск осуществляется в функции времени путем выведения резисторов из цепи ротора двигателя ( цепи катушек реле времени на схеме не изображены).

Управление воротами производится как с центрального,так с мест­ного пультов управления.

Для упрощения схемы (смотрите рисунок 24) показаны по две общих кнопки открытия SO и закрытия SZ , хотя с местных пультов можно уп­равлять каждой створкой в отдельности.

При рассмотрении схеме следует иметь в виду, что SQ1 - контакт путевого выключателя, блокирующий цепь управления двустворчатых во­рот с верхними воротами, и при закрытых верхних воротах он закрыт; SQ2 и SQ4 - контакты предельных путевых выключателей открытия; SQ3 и SQ5 - контакты путевых выключателей закрытия; SQ6 - контакт путе­вого выключателя, ограничивающий закрытие ворот; SQ7 - SQ10, SQ15 - контакты путевого выключателя, управляющие порядком закрытия ворот; SQ11, SQ12 - контакты путевого выключателя, осуществляющие блокиро­вание с затворами галерей, закрытые при открытых затворах; SQ13 и SQ14 - то же, отключающие контакторы КО1 и КО2 при открытых воро­тах; SA1 - SA3 - контакты выключателей деблокировок.

Подготовка схемы к работе. При наличии напряжения в соловой и вспомогательных цепях и закрытых контактах KV1, KV2 и KV3 получает питание катушка КМ. При срабатывании контактора КМ закрываются его замыкающие главные контакты в цепи статоров двигателей ( смотрите рисунок 23), а также замыкающий вспомогательный контакт КМ , кото­рый подает напряжение в цепь управления. Катушки реле времени КТ получают питание и размыкают свои контакты в цепях катушек контак­торов К1, К2. Схема к работе подготовлена.

Операция открытия ворот. Предположим, что управление происходит с центрального пульта ( замкнут контакт SA1 ) и ворота закрыты.

При нажатии кнопки SO, если контакты КУ закрыты, получает пита­ние катушка оперативного контактора КО1. Последний срабатывает, закрывает свои главные контакты, включающие двигатель М1 в сторону открытия, а также замыкающий вспомогательный контакт КО1, который шунтирует кнопку SO. Одновременно закрывается контакт КО1 и получа­ет питание катушка КО2.

Контактор КО2 срабатывает, включает для открытия двигатель М2 правой створки и закрывает вспомогательный контакт КО2, также шун­тирующий кнопку SO. Кроме того, при работе двигателей будут открыты размыкающие контакты КО1 и КО2 в цепях катушек KZ1 и KZ2. Одновре­менно открываются размыкающие контакты КО1 и КО2, прерывающие пода­чу питания на катушки реле времени КТ11 и КТ21. После заданной вы­держки времени эти реле отпускают свои якоря и замыкают размыкающи­еся контакты КТ11 и КТ12, в цепях катушек контакторов ускорения К11 и К12. Контакторы ускорения срабатывают, своими главными контактами выводят первые ступени резисторов в роторных цепях двигателей и размыкают свои размыкающие контакты в цепях катушек реле времени КТ21 и КТ22, которые с выдержкой времени закрывают одноименные кон­такты в цепях катушек контакторов К21 и К22,и двигатели переходят на работу по естественным характеристикам. Когда створки выходят из соприкосновения, закрываются контакты SQ15, шунтирующие вспомога­тельный контакт КО1. Включение контактора КО2 с некоторым запозда­нием по сравнению с контактором КО1 необходимо потому, что левая створка захватывает правую и, следовательно, должна первой отойти при открытии. Когда ворота полностью откроются, размыкаются контак­ты путевых выключателей SQ13 и SQ14, которые лишают питания катушки КО1 и КО2. Двигатели отключаются. Если контакты КО1 и КО2 поче­му-либо не размыкаются, ворота поворачиваются на небольшой угол и открываются контакты предельных выключателей SQ2 и SQ4, отключающие линейный контактор КМ. В процессе открытия ворот контакторы путевых выключателей в цепи катушек закрытия ворот KZ1 и KZ2 приходят в ис­ходное положение.

Операция открытия ворот. При закрытии ворот одновременно с нажа­тием кнопки SZ получают питание катушки оперативных контакторов KZ1 и KZ2.

Двигатели М1 и М2 начинают вращаться, причем их пуск происходит также, как и при открытии. Створки приходят в движение в сторону закрытия. Когда между створными столбами ворот остается небольшое расстояние ( порядка 1,5м ), открывается контакт SQ7, катушка кон­тактора KZ1 теряет питание и двигатель левой створки останавливает­ся. Правая створка продолжает движение до тех пор, пока не подойдет почти к положению створа. При этом открывается контакт SQ9, который отключает катушку KZ2. Двигатель правой створки останавливается. Одновременно с этим замыкается контакт SQ8, который вновь включает катушку контактора KZ1. Двигатель левой створки опять приходит во вращение. Когда левая створка коснется правой, закрываются контакты SQ10, вновь получает питание контактор KZ2,включает двигатель пра­вой створки и оба двигателя доводят створки ворот до полного закры­тия. При этом замыкается контакт SQ6, двигатели выключаются и меха­низмы створок тормозят.

Рассматриваемое в настоящей и последующих схемах ступенчатое закрытие двустворчатых ворот применяется не везде. На ряде шлюзов осуществляется безостановочное движение ворот при их закрытии, что в известной степени делает работу механической части более надежной и упрощает электрическую схему.

3.2.Привод с асинхронными фазными двигателями с регулированием скорости движения изменением сопротивления цепи ротора. (На рисунке

25) представлена схема силовой цепи, а на (рисунке 26) - схема це­пей управления двустворчатыми воротами, предусматривающая изменение частоты вращения двигателей и скорости вращения ворот в конце опе­рации закрытия ( при створении ворот ) и открытия ( при входе по­лотнищ ворот в ниши ). При рассмотрении работы схемы следует иметь в виду, что: SQ1 и SQ2 - контакты путевого выключателя, блокирующие цепь управления с ручным приводом створок, при работе ручного при­вода они открыты; SQ3 - SQ6 - контакты предельных открытия и закры­тия створок; SQ7-SQ10 - контакты, управляющие последовательностью движения створок при закрытие ворот; SQ11 и SQ12 - контакты, блоки­рующие привод ворот в зависимости от состояния затворов водопровод­ных галерей, замкнутые при открытых затворах; SQ13 - SQ15 - контак­ты путевого выключателя, ограничивающие открытие створок; SQ16 и SQ17 - то же, отключающие реле КР после открытия ворот, вызванного обратным напором; SQ18 и SQ19 - контакты путевого выключателя, отк­рывающиеся, когда усилия в штангах при закрытии ворот станут больше предельно допустимых; SQ20 и SQ21 - то же, закрытые при усилиях в штангах, меньших предельно допустимых при открытии ворот; SQ22 - контакт, размыкающий цепи катушек К1 и К2 для введения резисторов в цепи роторов двигателей М1 и М2 при схождении створок; SQ23 и SQ24

- контакты, замыкающиеся при обратном напоре.

Подготовка схемы к работе. При подаче напряжения к силовым цепям и к цепям управления и при нормальном состоянии блокировок реле напряжения силовой цепи KV, реле кнопок KSB и сельсинов KVB сраба­тывают и закрываю свои замыкающие контакты.

Через замкнутые рубильники цепи управления S и указанные контак­ты реле тока попадает в катушку промежуточного реле KVA максималь­ной и нулевой защиты электропривода ворот. Оно срабатывает и замы­кает свой контакт KVA в цепи катушки реле блокировки KV1. Это реле получит питание, если кратковременно замкнуть ключ восстановления SB.

При срабатывании реле KV1 замыкающие контакты KV1 шунтируют кон­такт ключа восстановления SB; контакт KV1, замкнувшись,

подготовляет цепь для индивидуального управления воротами при ус­ловии, что закрыты контакты КРУ и замыкающие контакты КВВ; закрыва­ется контакт KV1, который замыкает цепь катушки KF ( реле защиты при повышенных усилиях в штангах ). Катушка этого реле получает пи­тание через размыкающие контакты промежуточных реле KV3 и KV2.

Реле KF срабатывает, закрывает собой контакт KF, шунтирующий размыкающие контакты KV3 и KV2, и контакт KF, подготовляющий цепь для питания катушек оперативных контактов открытия КО1 и КО2.

Операция открытия ворот. При замыкании контактов SP6 ключа раз­дельного управления получает питание катушка промежуточного реле KV3. Последние срабатывает, причем: размыкаются его замыкающие кон­такты KV3, которое ставят питание катушки KF в зависимость от уси­лий в штангах двустворчатых ворот при открытии; замыкаются замыкаю­щие контакты KV3, в результате чего получают питание катушка опера­тивного контактора КО2, включающего двигатель М2 ведущей створки в направлении открытия.

Контактор КО2 срабатывает, в результате чего закрываются его за­мыкающие главные контакты КО2 силовой цепи и замыкающий вспомога­тельный контакт КО2, который подает питание на катушку линейного контактора КМ.

Последний срабатывает, и его главные контакты КМ включают обмот­ку статора двигателя М2 в сеть. Одновременно получает питание ка­тушка контактора электромагнитного тормоза Y2 ведущей створки, и тормоз открывается. Ведущая створка начинает отходить от положения створа. Кроме того, закрывается замыкающий контакт КО2, который включает в сеть катушку оперативного контактора КО1 ведомой створ­ки. Получив питание, контактор КО1 срабатывает.

Одновременно с включением статор двигателя М1 получает питание катушка электромагнитного тормоза Y1, который срабатывает и откры­вает тормоз двигателя М1.

Левая створка также начинает открываться. При подготовке цепи управления к работе через размыкающий вспо-

могательный контакт КМ получает питание не показанная на схеме ка­тушка электромагнитного реле времени КТ и ее размыкающий контакт КТ размыкается. Когда срабатывает линейный контактор,

катушка реле времени КТ теряет питание. После некоторой выдержки времени размыкающий контакт КТ закрывается и включает катушку К1 и К2.

Контакторы К1 и К2 срабатывают и закрывают свои контакты, в ре­зультате чего резисторы выводятся из цепей ротора двигателей М1 и М2. Перед входом створок ворот ниши ( для уменьшения скорости их движения перед остановкой ) эти резисторы с помощью контакта SQ22 вновь вводятся в цепь роторов двигателей.

Когда створки полностью откроются, разомкнутся контакты SQ13 и SQ15 путевых выключателей и двигатели отключаются от сети. Одновре­менно потеряют питание катушки КМ, КО1 и КО2.

В данной схеме предусмотрено возможность автоматического откры-

тия двустворчатых ворот в случаи обратного напора со стороны нижне­го бьефа. При обратном напоре в результате сжатия пружин, находя­щихся в штангах, замыкаются контакты SQ23 и SQ24 путевых выключате­лей.

Реле защиты КР при обратном напоре срабатывает, причем: открывается размыкающий контакт КР, разобщающий цепь управле-

ния катушкой КО2 И КО1 от цепи, замыкаемой ключом SP6;

закрывается замыкающий контакт КР, включающий катушку опера­тивных контактов КО1 и КО2.

Последние срабатывают, и пуск двигателей М1 и М2 в сторону отк­рытия происходит также, как описано выше. Поскольку катушка KV3 не получает питания, а контакт SQ22 путевого выключателя открыт, ка­тушки контакторов К1 и К2 не включаются и работа происходит при введенных в цепи роторов резисторах;

закрывается замыкающий контакт КР, шунтирующий контакты SQ23 и SQ24 путевых выключателей.

Когда ворота открываются, размыкаются контакты путевых выключа­телей SQ16 и SQ17, катушка КР теряет питание и двигатели М1, М2 отключаются то сети.

При открытых воротах будут закрыты контакты путевых выключателей SQ1 - SQ6, SQ8, SQ10 и SQ22 и открыты контакты путевых выключателей SQ9, SQ16, SQ17. При этом обесточиваются оперативные контакторы на­полнения КО1 и КО2, а также линейный контактор КМ и схема оказыва­ется подготовленной к новому пуску.

Операция закрытия ворот. При повороте ключа раздельного управле­ния SP5 получает питание катушка промежуточного реле KV2, работаю­щего при закрытии ворот. Последнее срабатывает и размыкает контакты KV2. В результате ток в цепи катушки реле KF появляется в зависи­мости от положения контактов SQ18 и SQ19 путевых выключателей. Если они закрыты, реле KF срабатывает и закрывает свои контакты.

При замыкании контактов KV2 получают питание катушки оперативных контактов KZ1 и KZ2, включающих двигатели левой и правой створок в сторону закрытия.

Одновременно включается катушки электромагнитных тормозов Y1 и Y2 и двигатели растормаживаются. При этом включаются двигатели и створки начинают закрываться.

При срабатывании контактора КМ теряет питание катушка реле КТ и после выдержки времени, необходимой для разгона, замыкается контакт КТ, обеспечивающий питание катушек контакторов К1 и К2. Их контакты шунтируют резисторы в цепи роторов. Двигатели работают на естест­венных характеристиках когда ведущая правая створка дойдет до поло­жения П1, откроется контакт путевого выключателя SQ8, который отк­лючает катушку контактора KZ2, ведущая створка останавливается. ве­домая створка продолжает движение до положения Л1. При этом сраба­тывает путевой выключатель SQ10, который отключает оперативный кон­тактор KZ1, а таким образом и двигатель М1.

Несколько ранее замыкается контакт путевого выключателя SQ9, по­дающие питание на оперативный контактор KZ2. Тогда вновь пускается в ход двигатель М2 ведущей створки. Однако при этом в цепи роторов двигателей оказываются введенными резисторы, так как размыкаются контакты путевого выключателя SQ22. Ведущая створка подходит к ве­домой и доводит ее до положения полного створа, после чего двига­тель М2 отключается путевым выключателем SQ7. Ведущая створка под­ходит к ведомой створки до полного створа левый двигатель должен быть расторможен, что обычно осуществляется отдельным контактором, управляющим электромагнитом тормоза этого двигателя. Двигатель М1 при этом для уменьшения нагрузки М2 также может включится в работу.

После отключения контактора KZ1 и KZ2 и постановки ключа SP5 в нулевое положение схема принимает исходное состояние.

Число путевых выключателей в приводе двустворчатых ворот значи­тельно меньше числа контактов, упомянутых в описании схемы. Это объясняется тем, что некоторые из выключателей снабжены несколькими контактами, которые закрываются и открываются при повороте на опре­деленный угол.

3.3. Электрический привод с гидропередачей. На (рисунке 27) по­казана структурная схема электрогидропривода двустворчатых ворот. Гидропередача привода каждой створки, как и в приводе подъемно - опускных ворот, содержит:

Силовой гидроцилиндр ГЦ,поворачивающийся в горизонтальной плос­кости по мере перемещения поршня и штока;

маслонасосную установку М-Н, подающую под давлением масло в гид­роцилиндр;

золотники управления ЗУ блоком золотников;

блок главных золотников БЗ, управляющий подачей масла в подпорш­невую ( для открытия ворот ) или в надпоршневую ( для закрытия во­рот ) полости гидроцилиндра;

бак Б для масла и маслопроводы.

Принципиальная схема силовой части электрогидропривода двуствор­чатых ворот представлено на (рисунке 28), а схема цепей управления на (рисунке 29).

При рассмотрении работы схемы следует иметь в виду, что:

SQ1 - контакт путевого выключателя блокировки с воротами смежной головы, замкнутой при закрытых смежных воротах;

SQ2, SQ4 - контакты путевых выключателей открытия;

SQ3, SQ5 - контакты путевых выключателей закрытия;

SQ6 - контакт путевого выключателя предельного положения закры­тия ворот ;

SQ7 - SQ10 - контакты путевого выключателя, управляющие последо­вательностью закрытия створок;

SQ11, SQ12 - контакты путевого выключателя блокировки с затвора­ми галерей, закрытые при открытых затворах;

SQ13, SQ14 - контакты путевого выключателя предельного положения открытия ворот;

КМ1, КМ2 - оперативные контакты двигателей насосов;

KYZ1, KYZ2 - контакторы электромагнитов золотников управления закрытием ворот;

KYO1, KYO2 - контакторы электромагнитов золотников управления открытием ворот;

YH, YZ, YO - электромагниты управления насосами и золотниками управления открытием и закрытием ворот. Как видно из схем и состава

оборудования, работа данного привода

аналогична работе привода двустворчатых ворот с асинхронными двига­телями. Работу гидропередачи при заданной последовательности опера­ции легко проследить. Наличие в последней схеме ( смотри рисунок 14 ) электромагнитов управления подачи насосов YH1 и YH2 допускает при необходимости получение переменной подачи, а значит, и изменение скорости движения створок, например при створении ворот в операции закрытия и входе их в ниши в операции закрытия. Для этого в цепи YH1 и YH2 должны быть введены соответствующие командные устройства.

3.4. Электропривод двустворчатых ворот с тормозным генератором. Рассмотренная схема двустворчатых ворот при их закрытии работает на смягченных характеристиках и в результате колебаний скорости не обеспечивает правильного створения ворот при различных изменения нагрузки на левую и правую створки из-за ветра и волновых явлении. Кроме того, вследствие сравнительно высокой скорости створок при срабатывании тормозов в конце операции раньше времени при закрытии ворот остается большая щель, а при срабатывании с опозданием имеет место удар створок.

Отмеченные недостатки, если большая часть операции будет проис­ходить на жестких механических характеристиках работы электроприво­да, обеспечивающих сохранение скорости створок при колебаниях наг­рузки, и значительным уменьшением ее в конце операции перед сраба­тыванием тормозов. Такие характеристики можно получить в системе с тормозным генератором, включаемый в конце операции для получения малой скорости привода. Тормозной генератор может быть отдельной электрической машиной постоянного или переменного тока, навешенной на вал приводного привода и являющийся для него дополнительной наг­рузкой. Отечественной промышленностью выпускаются асинхронные дви­гатели с встроенными тормозными генераторами, т. е. выполненными в едином корпусе.

Механическая характеристика такого двигателя с включенным гене­ратором представляет собой кривую, полученную при различных угловых скоростях.

На (рисунке 30) приведены механические характеристики асинхрон­ного двигателя ( кривая 1 ), тормозного генератора переменного тока ( кривая 2 ) и результирующая характеристика при включении обеих машин ( кривая 3 ).

Изменения сопротивления цепи ротора асинхронного двигателя или ток возбуждения тормозного генератора, можно получить различные по жесткости и пограничной скорости результирующие характеристики.

Принципиальная схема привода с тормозным генератором отличается то рассмотренной в предыдущем параграфе только цепями управления и поэтому здесь не приводится.

3.5. Электропривод с тиристорным управлением.  Как отмечалось, в

электроприводах гидротехнических сооружений стали находить примене­ние полупроводниковые силовые и оперативные элементы и устройства. Так, например, для управления асинхронными двигателями и регулиро­вания их частоты вращения в приводах опдъемно-опускных ворот ( зат­воров ) и двустворчатых ворот используются тиристерные преобразова­тели частоты ( ТПЧ ), тиристорные станции управления и регулирова­ния ( ТСУР ) и пускорегулирующие безконтактные устройства ( ПРБУ ).

Принципиальная схема силовой части электропривода с ПРБУ и век­торная диаграмма э.д.с. работы системы приведены на (рисунке 31), а и б.

Пускорегулирующее бесконтактное устройство состоит из ревесного бесконтактное устройство состоит из реверсного безконтактного ком­мутатора БК, блока динамического торможения БДТ, асинхронного вен­тельного каскада АВК, сглаживающих реакторов L и блоков управления и защиты ( последние на схеме не показаны ). Безконтактный коммута­тор состоит из четырех силовых тиристорных блоков, в каждый из ко­торых входят по два встречно-параллельно включенных тиристора. Два блока коммутатора служат для включения двигателя в прямом направле­нии вращения, а два других - в обратном. Третья фаза двигателя включенна в сеть напрямую ( не коммутируется ). Блок динамического торможения тиристорный работает совместно с одним плечем тиристор­ного блока коммутатора, которое обеспечивает однополупериодный вып­рямленный ток для динамического торможения. Блок динамического тор­можения состоит из симметричного тиристора V1, шунтирующего нерабо­тающую фазу двигателя, и рабочего тиристора V2, шунтирующего две другие фазы при непроводящем полупериоде работы коммутатора в режи­ме торможения.

Асинхронно-вентильный каскад включает асинхронный двигатель с фазным ротором М, выпрямитель U, инвертор И, ведомый сетью, и сгла­живающий дроссель L. Выпрямитель собран из силовых неуправляемых вентильных блоков по мостовой схеме, но из силовых управляемых ( тиристорных ) блоков.

Принцип действия ПРБУ основан на работе асинхронного вентильного каскада со звеном постоянного тока. Регулирование частоты вращения привода здесь обеспечивается введением добавочного э.д.с. в цепь ротора. Как видно из векторной диаграммы, при работе вентильного каскада введение в цепь выпрямленного тока ротора Ip внешней элект­родвижущей силы Еи, направленной навстречу току, меняет значение результирующей э.д.с. ротора Ер, а следовательно, тока и угла сдви­га между током и э.д.с. Внешняя электродвижущая сила, создаваемая инвертором, направленная навстречу току, и, следовательно, ее век­тор сдвинут относительно основной э.д.с. ротора на угол ( 180 - f ). Внешнюю э.д.с. возможно изменить выбором угла опережения откры­вания тиристоров инвертора, обеспечивая изменение результирующей э.д.с. тока ротора и угла сдвига между ними. Изменение тока ротора вызовет изменение вращающего момента электродвигателя, а при посто­янном моменте сопротивления и изменение частоты вращения двигателя.

При замкнутой системе регулирования в случае отрицательной обрат­ной связи по частоте вращения, управляя углом опережения открывания тиристоров, в такой схеме обеспечивается поддержанием постоянной частоты вращения при изменении момента сопротивления на валу. Меха­нические характеристики в рабочем диапазоне нагрузки при этом ока­зываются такими же, как и в системе Г-Д. Диапазон регулирования достигает 20:1 и выше. Первый опыт применения ПРБУ в приводах подъ­емно-опускных ворот ( затворов ) и двустворчатых ворот показал, что такие системы обладают хорошей регулирующей способностью и высокой надежностью и экономичностью, однако имеют сложную систему управле­ния.



2019-07-03 277 Обсуждений (0)
ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ 0.00 из 5.00 0 оценок









Обсуждение в статье: ОПИСАНИЕ СУЩЕСТВУЮЩИХ СХЕМ УПРАВЛЕНИЯ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (277)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)