Мегаобучалка Главная | О нас | Обратная связь


Соотношение неопределённостей Гейзенберга



2019-07-03 327 Обсуждений (0)
Соотношение неопределённостей Гейзенберга 0.00 из 5.00 0 оценок




Принцип неопределённости Гейзенберга - в квантовой физике так называют закон, который устанавливает ограничение на точность (почти)одновременного измерения переменных состояния, например, положения и импульса частицы. Кроме того, он точно определяет меру неопределённости, давая нижний (ненулевой) предел для произведения дисперсий измерений.

Рассмотрим, например, серию следующих экспериментов: путём применения оператора, частица приводится в определённое чистое состояние, после чего выполняются два последовательных измерения. Первое определяет положение частицы, а второе, сразу после этого, её импульс. Предположим также, что процесс измерения (применения оператора) таков, что в каждом испытании первое измерение даёт то же самое значение, или по крайней мере набор значений с очень маленькой дисперсией dp около значения p. Тогда второе измерение даст распределение значений, дисперсия которого dq будет обратно пропорциональна dp.

В терминах квантовой механики, процедура применения оператора привела частицу в смешанное состояние с определённой координатой. Любое измерение импульса частицы обязательно приведёт к дисперсии значений при повторных измерениях. Кроме того, если после измерения импульса мы измерим координату, то тоже получим дисперсию значений.

В более общем смысле, соотношение неопределённости возникает между любыми переменными состояния, определяемыми некоммутирующими операторами. Это - один из краеугольных камней квантовой механики, который был открыт Вернером Гейзенбергом в 1927 г.

 

КОРПУСКУЛЯРНО-ВОЛНОВОЙ ДУАЛИЗМ

Корпускулярно-волновой дуализм - это теория о том, что любое вещество (электромагнитное излучение, физическое тело, атом и т.п.) представляется на микроуровне одновременно и как мельчайшие частицы (корпускулы), и как волны. В частности, свет - это и корпускулы (фотоны), и электромагнитные волны.

Французский ученый Луи де Бройль (1892-1987) осознавая существующую в природе симметрию и развивая представления о двойственной корпускулярно-волновой природе света, выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами. Согласно де Бролю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия E и импульс p, а с другой стороны - волновые характеристики - частота и длина волны.

Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту. Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других, возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов в десятки миллионов раз более интенсивных.

Современная трактовка корпускулярно-волнового дуализма может быть выражена словами физика В. А. Фока (1898-1974): "Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна - частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно".

 

КОМБИНАЦИИ С КОТОМ

Одной из основ квантовой механики является так называемый принцип суперпозиции (наложения). Согласно этому принципу если есть несколько состояний, отвечающих различным волновым функциям, то существуют состояния, описываемые линейными комбинациями этих функций.

Рассмотрим умозрительный эксперимент с так называемым "котом Шредингера", проясняющий принцип суперпозиции. Кота помещают в коробку. В ней, кроме кота, находится капсула с ядовитым газом (или бомба), которая может взорваться с 50-процентной вероятностью благодаря радиоактивному распаду атома плутония или случайно залетевшему кванту света. Через некоторое время коробка открывается и выясняется, жив кот или нет. До тех пор пока коробка не открыта (не произведено измерение), кот пребывает в суперпозиции двух состояний: "живой" и "мертвый". Описывая с помощью волновых функций всю систему (коробку), включая кота, Эрвин Шредингер в 1935 году пришел к парадоксальному выводу. Состоял он в том, что наряду с состояниями, отвечающими живому или мертвому коту, согласно квантовой механике, существует и суперпозиция этих состояний. Другими словами, должно существовать состояние, когда кот "ни жив, ни мертв" (или жив и мертв одновременно). Применительно к окружающим нас объектам такая ситуация выглядит странновато. Однако для элементарных частиц нахождение одновременно в двух, казалось бы, взаимоисключающих состояниях совершенно естественно.

Недавно группа Джонатана Фридмана из Нью-Йоркского университета получила одно из доказательств того, что законам квантовой теории подвластны не только элементарные частицы, но и макроскопические объекты. Ученые показали, что примерно так же, как кот Шредингера, может вести себя электрический ток в сверхпроводящем кольце. Исследователи добились такого состояния сверхпроводящего кольца, при котором ток по нему тек одновременно и по часовой, и против часовой стрелки.

Одним из важнейших понятий квантовой теории поля является представление о вакууме. Физический вакуум не пустое место. Если полю, находящемуся в вакуумном состоянии, сообщить достаточную энергию, то происходит его возбуждение и рождение частиц - квантов этого поля.

 

СВЕРХТЕКУЧЕСТЬ

Сверхтекучесть - термодинамическая фаза квантовой жидкости, при котором она протекает через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разреженных атомных бозе-конденсатах, твёрдом гелии. Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия являются бозонами, квантовая механика допускает нахождение в одном состоянии произвольного числа частиц. Вблизи абсолютного нуля температур, все атомы гелия оказываются в наинизшем энергетическом состоянии. Поскольку энергия состояний дискретна, то атом не может получить любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеяния энергии попросту не будет происходить. Жидкость будет течь без трения.

В рамках двухжидкостной модели, гелий-II представляет собой смесь двух взаимопроникающих жидкостей: сверхтекучей и нормальной компонент. Сверхтекучая компонента представляет собой собственно жидкий гелий, находящийся в квантово-коррелированном состоянии, аналогичным состоянию бозе-конденсата (однако, в отличие от конденсата разреженных паров атомов, гелий находится в режиме сильной связи). Эта компонента движется без трения, обладает нулевой температурой и не участвует в переносе энергии в форме теплоты. Нормальная компонента представляет собой газ квазичастиц двух типов: фононов и ротонов, т. е. элементарных возбуждений квантовокоррелированной жидкости; она движется с трением и участвует в переносе энергии.

При нулевой температуре в гелии отсутствует свободная энергия, которую можно было бы потратить на рождение квазичастиц, и поэтому гелий находится полностью в сверхтекучем состоянии. При повышении температуры плотность газа квазичастиц (прежде всего, фононов) растёт, и доля сверхтекучей компоненты падает. Вблизи температуры лямбда-точки концентрация квазичастиц становится столь велика, что они образуют уже не газ, а жидкость квазичастиц, и наконец при превышении температуры лямбда-точки макроскопическая квантовая когерентность теряется, и сверхтекучая компонента пропадает вовсе. Относительная доля нормальной компоненты показана на Рис.1.

При протекании гелия сквозь щели с малой скоростью, сверхтекучая компонента, по определению, обтекает все препятствия без потери импульса, т. е. без трения. Трение могло бы возникнуть, если бы какой-либо выступ щели порождал бы квазичастицы, уносящие в разные стороны импульс жидкости. Однако такое явление при малых скоростях течения энергетически невыгодно, и только при превышении критической скорости течения начинают генерироваться ротоны.

Эта модель, во-первых, хорошо объясняет разнообразные термомеханические, светомеханические и т. п. явления, наблюдающиеся в гелии-II, в во-вторых прочно базируется на квантовой механике.

 

СВЕРХПРОВОДИМОСТЬ

Свойство сверхпроводимости проявляется у некоторых материалов как резкое падение удельного сопротивления вплоть до нуля при температуре ниже определённого значения. Ныне известно свыше 500 чистых элементов и сплавов, обнаруживающих свойство сверхпроводимости. Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей градуса, и поэтому имеет смысл определённое значение Тс - температура перехода в сверхпроводящее состояние. Ширина интервала перехода зависит от неоднородности металла, в первую очередь - от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0.0005 K (Mg) до 23,2 К (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2). По состоянию на октябрь 2007, наивысшая температура, при которой наблюдалась сверхпроводимость Tc=138К (-135 °C) для керамического материала состоящего из таллия, ртути, меди, бария, кальция, стронция, и кислорода. Изотопический эффект у сверхпроводников заключается в том, что температуры Тс обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего металла.



2019-07-03 327 Обсуждений (0)
Соотношение неопределённостей Гейзенберга 0.00 из 5.00 0 оценок









Обсуждение в статье: Соотношение неопределённостей Гейзенберга

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (327)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)