Мегаобучалка Главная | О нас | Обратная связь


Рентгеновская астрономия



2019-07-03 264 Обсуждений (0)
Рентгеновская астрономия 0.00 из 5.00 0 оценок




Реферат

по теме:

«Способы изучения космоса»

Выполнила:

Ученица 9-В

Шеметовская Ирина

Цель: Изучить физические способы изучения космоса в астрономии.

Вступление:

Изучение Космоса до сих пор имеет значимость. Человечество продолжает стремиться узнать что-то новое, вновь удивить и раскрыть самые секретные тайны Вселенной.

Моя задача пояснить основные этапы освоения космического пространства. Рассказать об основных научных исследований и экспериментах.

 

Существует несколько способов изучения космоса:

· Телескоп, как способ наблюдения за изменениями космического пространства.

· Научные эксперементы на космических спутниках .

· Гамма и рентгеновская – астрономия.

· Инфракрасная астрономия на воздушных шарах.

Новые методы исследования вселенной

Астрономия в наши дни бурно развивается. Однако сам по себе этот факт отнюдь не служит отличительной особенностью именно середины XX в. По сути дела, быстрый прогресс астрономии начался с той знаменательной ночи 7 января 1610 г., когда Галилей впервые направил свой телескоп в небо.

Галилей изготовлял телескопы (подзорные трубы) своими руками и наблюдения были им начаты с трубой, дававшей лишь 30-кратное увеличение. Чтобы отдать должное величию астрономических исследований Галилея, достаточно напомнить, что он открыл четыре наиболее ярких спутника Юпитера, фазы Венеры, горы на Луне и пятна на Солнце. Дальнейшее развитие астрономии можно охарактеризовать целым рядом достижений, но мы ограничимся указанием на возможность «измерить» успехи астрономии почти за 350 лет (от времени Галилея до середины нашего века) просто диаметром телескопов. Лучшие трубы Галилея имели диаметр лишь немного превосходивший 5 см, их длина равнялась примерно 1 м. Самый большой современный телескоп, вступивший в строй в 1948 г., имеет зеркало диаметром 5 м. Таким образом, угловое разрешение и светосила телескопов возросли соответственно примерно в 100 и 10 000 раз.

Но одно оставалось в астрономии неизменным с давних времен, когда наблюдения проводились только невооруженным глазом, до последнего времени — все наблюдения велись только через «оптическое окно прозрачности» в атмосфере. Как известно, атмосфера пропускает электромагнитные волны с длиной, большей ~3000 Å=0,3 мк и меньшей нескольких десятков микрон. Человеческий глаз чувствителен лишь к еще более узкому участку спектра — от 0,4 до 0,75÷0,8 мк. Из-за этого большая часть наблюдений проводилась в видимом свете, а исследования в близкой ультрафиолетовой и инфракрасной областях, еще возможные с земной поверхности, играли второстепенную роль.

В то же время во Вселенной возникают и несут информацию электромагнитные волны всех диапазонов, с длиной от сотен метров до ничтожных долей ангстрема. Поэтому и без специальных доказательств яс­но, что наблюдение Вселенной только через оптическое окно прозрачности чрезвычайно обедняет картину.

В атмосфере помимо оптического окна прозрачности существует «радиоокно». Ему отвечают волны длиной от нескольких миллиметров до десятков метров (для более длинных волн земная атмосфера уже непроз­рачна или, во всяком случае, не всегда прозрачна). Меньше чем за 20 лет радиоастрономия колоссально развилась и сама уже делится на ряд направлений: метагалактическую и галактическую радиоастрономию, солнечную радиоастрономию, лунно-планетную и радиолокационную радиоастрономию. Об успехах, достигнутых в каждой из этих областей, написано уже немало статей.

 С запуском спутников и космических ракет появилась возможность исследования, так сказать, прямыми методами (примером может служить измерение концентрации электронов в межпланетной среде, осуществлен­ное на ракетах), а также возможность развивать астрономию на спутни­ках и ракетах. Аппаратура, установленная на спутниках и ракетах, может регистрировать радиоволны, лежащие вне радиоокна прозрачности (т. е. волны короче нескольких миллиметров и длиннее десятков и сотен мет­ров), далекое инфракрасное излучение (длина волны от десятка микрон до радиодиапазона) и все электромагнитные волны короче 0,3 мк, т. е. ультрафиолетовые, рентгеновские и γ-лучи. Наконец, на спутниках и ракетах ведется регистрация первичных космических лучей, в основном протонов и ядер различных элементов с энергией, превосходящей сотни миллионов электронвольт. В первичных космических лучах присутствуют также электроны и позитроны. Космические лучи несут ценную астрономическую информацию.

 Итак, действительно, можно утверждать, что оптическая астрономия утратила свое почти монопольное положение, открыты новые окна во Вселенную.

В этой статье мы остановимся несколько подробнее только на двух родственных между собой новых астрономических направлениях — на гамма- и рентгеновской астрономии. А так же немного инфракрасной астрономии на воздушных шарах.

 

Гамма-астрономия

Между гамма (γ)- и рентгеновскими лучами, как известно, не существует никакой резкой границы. Будем поэтому условно называть γ -лучами электромагнитное излучение, которому отвечают кванты (фотоны) с энер­гией большей 0,1 Мэв=100 000 эв или с длиной волны γ, меньшей 0,1 Å. Существенная разница между гамма- и рентгеновскими лучами со­стоит в том, что они обычно имеют разное происхождение. Так, рентгеновские лучи испускаются достаточно тяжелыми атомами при переходах электронов между энергетическими уровнями, отвечающими глубоким электронным оболочкам. Кроме того, рентгеновское излучение возникает при торможении достаточно быстрых, но еще не релятивистских электронов. В отличие от этого, γ -лучи испускаются в результате других процессов, которые мы сейчас перечислим.

1. При некоторых переходах между уровнями в атомных ядрах возникают γ -лучи с энергией примерно до 10 Мэв .

2. γ -лучи образуются при аннигиляции пары электрон — позитрон . При этом, если электрон и позитрон имеют малую скорость и аннигилируют в вакууме, обычно возникает только два γ -фотона, причем энергия каждого из них mc2 =0,51 Мэв, где m=9,1∙10-28 г — масса эле­ктрона.

3. Они возникают также при торможении электронов, скорость которых приближается к скорости света, например, в результате их соударения с протонами или покоящимися электронами. При этом возникает электромагнитное излучение, которому отвечают фотоны с энергией Еλ ≤ Е. Таким образом, на основании принятой нами границы между γ- и рентгеновскими лучами, тормозные γ -лучи образуются электро­нами с энергией Е, большей 0,1 Мэв.

4. Электроны с достаточно большой энергией генерируют γ -лучи и в результате рассеяния на оптических (световых) фотонах (так называемый комптон-эффект).

В этом последнем процессе быстро движущиеся электроны при столкновении со световыми фотонами передают им часть своей энергии.

В результате энергия рассеянных фотонов оказывается в среднем в (Е/mc2 )2 раз больше их энергии до рассеяния. Так, световые фотоны с энергией около 1 эв при рассеянии на релятивистских электронах, имеющих энергию Е >300 mс2 =150 Мэв, образуют γ -лучи с энергиями Еγ >0,1 Мэв.

5. При столкновениях космических лучей с ядрами межзвездного газа образуются нейтральные и заряженные π-мезоны. Нейтральные мезоны очень быстро распадаются, порождая два γ -фотона. Энергия этих фотонов зависит от скорости, с которой движется до распа­да π°-мезон, и от направления вылета, но практически всегда превы­шает 50 Мэв.

Таким образом, если не говорить о ядерных и аннигиляционных γ-лучах со сравнительно малой энергией, основную роль в генерации γ-излучения играют быстрые частицы и в первую очередь космические лучи, включая их электронную компоненту.

Интенсивность γ -лучей, возникающих в некоторой области Вселенной, очевидно, пропорциональна как интенсивности генерирующих их космических лучей, так и концентрации газа (или световых фотонов в случае процесса 4) в этой области. О характере распределения межзвездного газа некоторые сведения уже получены методами оптической и радио­астрономии.

Что касается распределения космических лучей во Вселенной, то здесь также имеются определенные данные, особенно, когда речь идет о нашей звездной системе — Галактике.

В отличие от космических лучей, γ -лучи распространяются во Вселенной прямолинейно и практически без поглощения. Поэтому их наблюдение в принципе позволяет непосредственно изучать пространственное распределение космических частиц, порождающих эти лучи, а возможно, также и уточнить имеющиеся сведения о плотности межзвездного и меж­галактического газа.

Особенно интересны при этом возможности, которые открывает гам­ма-астрономия для изучения Метагалактики. О космических лучах в Метагалактике, т. е. за пределами Галактики, еще очень мало известно. Но уже первые результаты гамма-астрономии позволили здесь сделать некоторые важные выводы.

Выполненные на американском спутнике «Эксплорер XI» измерения интенсивности γ -лучей с энергией больше 50 Мэв установили верхний предел для их потока из космоса, равный примерно десяти фотонам на 1 м2 в секунду.

Анализ этих данных показывает, что интенсивность электронной компоненты космических лучей в Метагалактике существенно меньше (по крайней мере в 30 раз), чем в Галактике. В противном случае в результате рассеяния электронов на световых фотонах, излучаемых звездами и галактиками, поток γ -лучей был бы выше установленного на опыте верхнего предела.

Малая интенсивность электронной компоненты делает весьма вероятным, что и полная интенсивность космических лучей (включая протоны и более тяжелые ядра) в Метагалактике также мала. Окончательно этот вывод может быть проверен при дальнейшем повышении точности экспе­риментов по наблюдению космических γ -лучей и, в частности, после оцен­ки интенсивности от упомянутого выше процесса рождения и распада π°-мезонов.

Метагалактическое γ -излучение приходит к нам равномерно со всех сторон. Наоборот, γ-излучение галактического происхождения уже неизотропно. Например, галактические γ -лучи, образующиеся при распаде π°-мезонов, будут в основном приходить от центра Галактики, ибо именно в этом направлении сосредоточено больше всего межзвездного газа .

Помимо общего метагалактического и галактического γ-излучения, которое генерируется в межгалактическом и межзвездном пространстве, большой интерес представляет излучение γ -лучей от отдельных, так называемых дискретных, источников. Во Вселенной существует целый ряд образований (сверхновые звезды, радиогалактики, нестационарные ядра галактик и так называемые сверхзвезды или квазары), для которых характерны мощные взрывные процессы с большим выделением энергии. Такие объекты могут быть источниками интенсивного γ -излучения. Прием γ- лучей от дискретных источников позволит, разумеется, пролить свет на природу этих источников, или по крайней мере получить о них важные сведения.

Итак, допустим, что оптическое излучение квазаров магнитотормозное и, естественно, подумаем, как же проверить эту гипотезу. Сделать это по ряду причин нелегко и один из перспективных путей здесь состоит в использовании гамма-астрономии. Дело в том, что квазары очень яркие и в то же время сравнительно небольшие объекты (их размер, по-видимому, меньше светового года, в то время как диаметр нашей Галактики достигает 100 000 световых лет). По обеим причинам, как это сразу ясно, вблизи излучающей поверхности квазара должно быть очень много оптических фотонов. Поэтому там с большой вероятностью будет происходить рассея­ние релятивистских электронов на фотонах. Значит, если оптическое из­лучение квазаров имеет магнитотормозную природу, т.е. вызывается релятивистскими электронами, то эти же самые электроны будут в результате рассеяния на оптических фотонах давать много γ-лучей. Другими словами, квазары могут ока­заться не только замечательными оптическими источниками, но и наиболее сильными источни­ками γ -лучей. К сожалению, такое излучение квазаров еще не пытались принимать, к тому же эта задача может оказаться особенно трудной, если размер квазаров несколько больше, а концентрация фотонов у поверхности соответственно меньше, чем мы ожидаем. Но одно несомненно уже сейчас: прием γ-излучения от дискретных источ­ников — дело далеко не безнадежное; наоборот, такой прием может открыть новые горизонты в астрономии.

Для того чтобы эта возможность не показа­лась слишком проблематичной, укажем, что γ-излучение от одного «дискретного источника» не только может приниматься, но и фактически уже обнаружено. Речь идет о Солнце. Едва ли нужно подчеркивать то исключительное значение, которое имеют происходящие на Солнце процессы для жизни и практической деятельности людей. Особый интерес вызывают при этом вспышки на Солнце, приводящие к образованию потоков горячей плазмы, космических лучей, рентгеновских лучей и мощного радиоизлучения. Недавно было установлено, что во время вспышек генерируются также γ -лучи (за­регистрировано было γ-излучение с энергией около 0,5 Мэв). Несомненно, гамма-телескоп прочно займет место среди приборов, служащих для изучения Солнца.

Развитие гамма-астрономии связано с подъемом соответствующей аппаратуры (ее можно назвать «гамма-телескопом») на спутниках и ракетах. И действительно, основной метод в гамма-астрономии — это установка на спутниках и ракетах различного типа счетчиков, используемых в ядерной физике для регистрации γ-лучей. Такой путь, однако, не является единственным. Космическое γ-излучение с достаточно высокой энергией можно фиксировать также в земной атмосфере по создаваемым им вторичным продуктам («ливням» из электронов, позитронов и более мягких " γ-лучей). Если учесть успехи в области запуска спутников и ракет, а также разнообразие методов регистрации γ –лучей и создаваемых ими вторичных частиц, станет ясной возможность конструирования все более совершенных гамма-телескопов.

 

Рентгеновская астрономия

Во время солнечных вспышек образуются, в числе других проявлений солнечной активности, также и рентгеновские лучи (о чем мы уже упоминали). Солнечные рентгеновские лучи уже многократно наблюдались (начиная с 1948 г.) и принесли ценные сведения о процессах, разыгрывающихся в солнечной атмосфере. Здесь речь идет, однако, об одной из сторон единого явления, изучаемого разными методами — оптическим, радиоастрономическим, по вариациям космических лучей и т. д. Поэтому о солнечном рентгеновском излучении правильнее всего рассказывать в статье, посвященной физике Солнца. Мы же этой темы подробнее касаться не будем, тем более, что уже открыто и большое внимание привлекает к себе космическое рентгеновское излучение несолнечного происхождения.

Опыты, проведенные на ракетах в 1962 и 1963 гг., позволили обнаружить изотропное («фоновое») рентгеновское излучение, приходящее со всех сторон почти равномерно. При этом в интервале длин волн между 2 и 8 Å (это соответствует энергии фотонов между 1,5 и 6 кэв) «рентгеновс­кий телескоп», состоящий из счетчиков фотонов, регистрирует примерно 20 фотонов, падающих в 1 сек, на 1 см2 поверхности счетчика. Кроме того, были обнаружены дискретные источники рентгеновского излучения в созвездиях Скорпиона и Тельца, а также еще около двух десятков менее ярких рентгеновских источников. Поток рентгеновских фотонов от упомя­нутых двух источников составляет соответственно 20 и 2,5 фотона на 1 см2 в 1 сек (в интервале длин волн между 2 и 8 Å).

Какова же природа космического рентгеновского излучения, и в особенности «дискретных источников», которые условно можно было бы назвать «рентгеновскими звездами»? На этот вопрос еще не получено вполне определенного ответа. Рентгеновские лучи, как и γ-излучение, могут генерироваться электронами в результате их торможения при соударении с ионами или путем рассеяния электронов на оптических фотонах. Разница здесь только та, что рентгеновские лучи образуются электронами со сравнительно небольшой энергией (скажем, меньше 1 Мэв), о количестве которых в разных областях Вселенной мы практически ничего не знаем. Впрочем, последнее обстоятельство лишний раз свидетельствует о ценности методов рентгеновской астрономии, позволяющей получить данные об электронах с соответствующей энергией. Конкретно наблюдаемое изотропное рентгеновское излучение вполне могло бы образовываться в межгалактическом пространстве именно за счет рассеяния этих электронов на оптических фотонах. Вполне возможно также, что «рентгеновский фон» на самом деле представляет собой излучение большого числа слабых (и поэтому неразрешаемых аппаратурой) метагалактических источников. Хотя этот вопрос весьма интересен и здесь имеются пути для продвижения вперед (в первую очередь речь идет о спектральных наблюдениях и подтверждении факта изотропности излучения), значительно большую остроту приобрела проблема дискретных рентгеновских источников. Объясняется это рядом причин и, в частности, тем, что такими источниками могут быть нейтронные звезды, привлекающие к себе внимание (но пока только в теории!) уже около 30 лет.

При сгорании ядерного топлива, поддерживающего свечение звезд, они постепенно сжимаются и превращаются в звезды-карлики, состоящие из плотного ионизованного газа. Однако при дальнейшем остывании звезды, как показывают расчеты, может оказаться энергетически выгодным переход ее в нейтронное состояние. Это значит, что протоны соединяются с электронами и, испуская нейтрино, превращаются в нейтроны ( процесс р+е- →n+v). В нейтронном состоянии звезда обладает примерно такой же плотностью, как атомные ядра — речь идет о средней плотности, равной примерно 1014 г/см3 , т. е. около ста миллионов тонн в 1 см3 . Поэтому звезда с массой Солнца при переходе в нейтронное состояние будет иметь радиус всего порядка 10 км, в то время как радиус видимой глазом солнечной фотосферы составляет 700 000 км (средняя плотность Солнца равна примерно плотности воды, т. е. 1 г/см3). Количество света, испускаемого звездой, очевидно, пропорционально площади ее поверхности, т. е. квадрату ее радиуса. В этой связи, если бы Солнце превратилось в нейтронную звезду (это в нашу эпоху заведомо невозможно), то при той же температуре поверхности (фотосферы) оно стало бы излучать в миллиарды раз меньше света. Именно по подобной причине долгое время казалось, что наблюдать нейтронные звезды невозможно, если только они каким-то чудом не окажутся расположенными совсем близко от нас.

За последние три-четыре года стало ясно, однако, что этот вывод неверен; действительно, при своем образовании нейтронная звезда нагревается и в течение некоторого времени вполне может быть значительно горячее, чем солнечная фотосфера, температура которой около 6000 градусов. Но чем тело горячее, тем оно больше излучает — в тепло­вом равновесии энергия электромагнитного излучения пропорциональна Т4 , где Т — температура поверхности. Далее, чем тело горячее, тем более коротковолновое излучение оно в основном испускает, так что для максимума в спектре произведение длины волны λ на температуру Т остается постоянным (закон смещения Вина). Легко сообразить отсюда, что звезда с температурой в 10 млн. градусов будет в основном излучать уже рентгеновские лучи. Мощность этого излучения так велика, что существующими «рентгеновскими телескопами» можно было бы заметить нейтронную звезду, находящуюся на расстоянии в тысячи световых лет. Так не являются ли источники рентгеновских лучей в Скорпионе и Тельце горячими нейтронными звездами?

Этот вопрос привлек к себе пристальное внимание астрономов и физиков во многих странах. На первый взгляд кажется, что гипотезу о нейтронной природе «рентгеновских звезд» легко проверить. Так, нейтронные звезды настолько малы, что связанный с ними рентгеновский источник должен казаться точечным при самом высоком угловом разрешении. Кроме того, частотный спектр теплового излучения хорошо известен и поэтому можно в принципе выяснить, тепловой источник или нет (излучение нейтронных звезд должно быть тепловым). Не следует, однако, забывать о слабостях только что родившихся рентгеновской и гамма-астрономии. Существующие приборы не способны еще осуществить сколько-нибудь детальный спектральный анализ, а низкое угловое разрешение — буквально «ахиллесова пята» этих новых ветвей астрономии.

По всей вероятности, рентгеновское излучение Крабовидной туманности, подобно радио- и большей части оптического излучения этой туманности, имеет магнитотормозную природу. Окончательно доказать это предположение можно будет только в результате более подробного исследования, в частности, определения спектра излучения или выявления его поляризации. Но каков бы тут ни был ответ, обнаружение рентгеновского излучения от разлетающейся оболочки сверхновой звезды имеет выдающееся значение.

Гамма- и рентгеновская астрономия только что зародились; в этой области, если не говорить о приеме рентгеновского излучения Солнца, проведено всего несколько экспериментов. Но уже эти первые шаги свидетельствуют о том, что появился новый, весьма перспективный метод изучения Вселенной. Более того, возможно, что в ближайшие годы гамма- и рентгеновская астрономия окажут неоценимые услуги для развития астрономии в целом.

Это открытие, а также ряд других результатов, выдвинули рентгеновскую астрономию на «передний край» астрономии сегодняшнего дня. Можно полагать, что уже в ближайшие годы рентгеновская астрономия будет бурно развиваться, а затем станет равноправным «партнером» с оптической и радиоастрономией.

 



2019-07-03 264 Обсуждений (0)
Рентгеновская астрономия 0.00 из 5.00 0 оценок









Обсуждение в статье: Рентгеновская астрономия

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (264)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)