Теория вопроса и метод выполнения работы
ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ПРОЗРАЧНОЙ ЖИДКОСТИ ПО МЕТОДУ СТОКСА Цель работы: ознакомиться с методом определения коэффициента вязкости прозрачной жидкости методом движущегося в жидкости шарика. Оборудование: стеклянный цилиндр, с прозрачной жидкостью; секундомер; микрометр; масштабная линейка; шарики из свинца. Теория вопроса и метод выполнения работы
Явления переноса объединяют группу процессов, связанных с неоднородностями плотности, температуры или скорости упорядоченного перемещения отдельных слоев вещества. К явлениям переноса относятся диффузия, внутреннее трение и теплопроводность. Явлением внутреннего трения (вязкости) называется появление сил трения между слоями газа или жидкости, движущимся, друг относительно друга, параллельно и с разными по величине скоростями. Слой, движущийся быстрее, действует с ускоряющей силой на более медленно движущийся соседний слой. Силы внутреннего трения, которые возникают при этом, направлены по касательной к поверхности соприкосновения слоев (рис. 1, 2). Величина силы внутреннего трения между соседними слоями пропорциональна их площади и градиенту скорости , то есть справедливо соотношение, полученное экспериментально Ньютоном
.(1)
Величина называется коэффициентом внутреннего трения или динамическим коэффициентом вязкости. В СИ измеряется в . Входящая в (1) величина показывает, как меняется скорость жидкости в пространстве при перемещении точки наблюдения в направлении, перпендикулярном слоям. Понятие градиента скорости иллюстрируется рис. 1, 2.
Рис. 1. Постоянный градиент скорости
На рисунке 1 показано распределение скоростей слоев жидкости между двумя параллельными пластинами, одна из которых неподвижна, а другая имеет скорость . Подобная ситуация возникает в прослойке смазки между движущимися деталями. В этом случае слои жидкости, непосредственно прилегающие к каждой из пластин, имеют одинаковую с ней скорость. Движущиеся слои частично увлекают за собой соседние. В результате в пространстве между пластинами скорость жидкости меняется по направлению равномерно. Таким образом, здесь
.
Рис. 2. Переменный градиент скорости
На рисунке 2 показано распределение скоростей жидкости около движущегося в ней вертикально вниз со скоростью шарика. Предполагается, что скорость мала, так что завихрения в жидкости не образуются. В этом случае жидкость, непосредственно прилегающая к поверхности шарика, имеет скорость . В это движение частично вовлекаются удаленные от шарика слои жидкости. При этом скорость наиболее быстро меняется по направлению вблизи шарика. Наличие градиента скорости у поверхности тела указывает, что на него действует сила внутреннего трения, зависящая от коэффициента вязкости . Сама величина определяется природой жидкости и обычно существенно зависит от ее температуры. Сила внутреннего трения и коэффициент вязкости жидкости может быть определен различными методами – по скорости истечения жидкости через калиброванное отверстие, по скорости движения тела в жидкости и т.д. В данной работе для определения используется метод, предложенный Стоксом. Рассмотрим для примера равномерное движение маленького шарика радиуса в жидкости. Обозначим скорость шарика относительно жидкости через . Распределение скоростей в соседних слоях жидкости, увлекаемых шариком, должно иметь вид, изображенный на рис. 2. В непосредственной близости к поверхности шара эта скорость равна , а по мере удаления уменьшается и практически становится равной нулю на некотором расстоянии от поверхности шара. Очевидно, чем больше радиус шара, тем большая масса жидкости вовлекается им в движение, и должно быть пропорционально радиусу шарика : . Тогда среднее значение градиента скорости на поверхности шара равно
.
Поверхность шара , и полная сила трения, испытываемая движущимся шаром, равна
.
Более подробные расчеты показывают, что для шара , окончательно – формула Стокса. По формуле Стокса можно, например, определить скорости оседания частиц тумана и дыма. Ею можно пользоваться и для решения обратной задачи – измеряя скорость падения шарика в жидкости, можно определить ее вязкость. Упавший в жидкость шарик движется равноускоренно, но, по мере того, как растет его скорость, будет возрастать и сила сопротивления жидкости до тех пор, пока сила тяжести шарика в жидкости не сравняется с суммой силы сопротивления и силы трения жидкости движению шарика. После этого движение будет происходить с постоянной скоростью . При движении шарика слой жидкости, граничащий с его поверхностью, прилипает к шарику и движется со скоростью шарика. Ближайшие смежные слои жидкости также приводятся в движение, но получаемая ими скорость тем меньше, чем дальше они находятся от шарика. Таким образом, при вычислении сопротивления среды следует учитывать трение отдельных слоев жидкости друг о друга, а не трение шарика о жидкость. Если шарик падает в жидкости, простирающейся безгранично по всем направлениям , не оставляя за собой никаких завихрений (малая скорость падения, маленький шарик), то, как показал Стокс, сила сопротивления равна ,(2)
где – коэффициент внутреннего трения жидкости; – скорость шарика; – его радиус. Кроме силы на шарик действует сила тяжести и архимедова сила , равная весу вытесненной шариком жидкости. Для шара
; ,(3)
где , – плотность материала шарика и исследуемой жидкости. Все три силы будут направлены по вертикали: сила тяжести – вниз, подъемная сила и сила сопротивления – вверх. Первое время, после вхождения в жидкость, шарик движется ускоренно. Считая, что к моменту прохождения шариком верхней метки скорость его уже установилась, получим
,
где – время прохождения шариком расстояния между метками, – расстояние между метками. Движения шарика возрастает, ускорение уменьшается и, наконец, шарик достигнет такой скорости, при которой ускорение становится равным нулю, тогда
.(4)
Подставляя в равенство (4) значение величин, получим:
.(5)
Решая уравнение (5) относительно коэффициента внутреннего трения, получаем расчетную формулу:
.(6)
Рис. 3. Прибор Стокса
На рисунке 3 представлен прибор, состоящий из широкого стеклянного цилиндра с нанесенными на него двумя кольцевыми горизонтальными метками и ( – расстояние между метками), который наполняется исследуемой жидкостью (касторовое масло, трансформаторное масло, глицерин) так, чтобы уровень жидкости был на 5¸8 см выше верхней метки.
Популярное: Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (273)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |