Мегаобучалка Главная | О нас | Обратная связь


Организация электропитания систем



2019-07-04 213 Обсуждений (0)
Организация электропитания систем 0.00 из 5.00 0 оценок




 

Основным условием бесперебойной работы систем диспетчерской централизации, в особенности использующей надежного электроснабжения устройств центрального поста (центра управления) и контролируемых пунктов. Прекращение действия ДЦ по причине отсутствия электроэнергии не влечет за собой угрозы нарушения условий безопасности перевозочного процесса. Однако косвенная угроза имеется, поскольку персонал вынужден регулировать движение без технических средств, что, кроме того, приводит к потерям в движении до перевода станций на резервное управление. По этой причине системы ДЦ являются потребителями электроэнергии особой группы 1 категории и должны получать питание от двух независимых источников энергии по двум фидерам (силовым кабелям) с автоматическим переключением питания с одного фидера на другой в случае пропадания напряжения. Емкость аккумуляторов рассчитывается на резервное питание устройств в течение 6 ч.

Электропитающая установка центрального поста ДЦ состоит из вводной панели ПВ-60 и панели выпрямителей ПДЦ. Вводная панель предназначена для подключения двух фидеров переменного тока и одного фидера от резервного источника, а также автоматического переключения нагрузки на работающий фидер при пропадании напряжения хотя бы одной из фаз работающего фидера. Коммутационная мощность панели составляет 60 кВА. На каждый диспетчерский круг устанавливаются панель ПДЦ и группа аккумуляторов, состоящая из двух секций по шесть аккумуляторов каждая.

Электроснабжение современных систем, основывающихся на средствах вычислительной техники, имеет некоторые особенности. Электронное оборудование компьютерных систем ДЦ в процессе эксплуатации оказывается под воздействием различных электромагнитных помех, большая часть которых распространяется по цепям электропитания. Эти факторы могут вызвать не только сбои в работе компьютера или другого электронного оборудования и потерю данных, но и необратимые процессы разрушения программного продукта, а также выход из строя аппаратуры. Статистика также свидетельствует, что по причинам, связанным со сбоями в электросети, в 75% случаев происходит потеря информации и в 65% выходит из строя электронное оборудование. Искаженное, нестабильное напряжение электропитания системы отрицательно воздействует на файл-серверы, рабочие станции и другую сетевую аппаратуру (концентраторы, маршрутизаторы, коммутаторы, мосты и пр.). Так, со снижением напряжения увеличивается потребляемый ток, в результате растет температура внутри корпуса системного блока, монитора, модемов и другого периферийного оборудования. Повышенная температура значительно сокращает срок службы многих элементов, особенно электролитических конденсаторов, приводит к выходу из строя полупроводниковых элементов.

Бесперебойное снабжение электропитанием электронных устройств позволяет избежать таких отказов.

Источники бесперебойного питания (ИБП) выполняют две основные функции: обеспечивают приемлемое качество электроэнергии на выходе и обеспечивают резервное электропитание в случае полного пропадания (или отклонения за пределы установленных норм) входного напряжения.

В состав любого ИБП входят следующие элементы: входной фильтр (ВФ), включающий в себя радиочастотный фильтр и подавитель импульсов; аккумуляторная батарея (АБ) с зарядным устройством (ЗУ); инвертор - преобразователь постоянного тока в переменный; в некоторых типах ИБП - преобразователь постоянного тока в постоянный ток другого номинального значения (конвертор); в некоторых типах ИБП - трансформаторы для развязки выхода от входа; схемы управления работой ИБП.

Способность ИБП обеспечивать заданные качество и бесперебойность питания нагрузки определяется его внутренней архитектурой, или классом.

Различают три класса источников: OFF-LINE (STANDBY), LINE-INTERACTIVE, ON-LINE.

В ИБП OFF-LINE электроэнергия внешнего снабжения через подавитель импульсов и радиочастотный фильтр передается на нагрузку (рис.2). В случае недопустимых возмущений или полного пропадания входного напряжения специальные ключи переводят подключаемую к ИБП нагрузку на АБ и инвертор.

Общим недостатком таких ИБП является разрыв синусоиды напряжения на выходе устройства на время 1-5 мс при переключении на резервный источник.

Благодаря большой суммарной входной емкости таких блоков питания, достаточной для поддержания номинального напряжения на его силовых элементах в течение такого промежутка времени (менее четверти периода синусоиды), в цепях вторичного электропитания компьютеров перерыва в электроснабжении не произойдет.

 

Рис.2. Структурная схема источника бесперебойного питания OFF-LINE

 

Однако для некоторых потребителей такой перерыв недопустим. К ним относятся, например, потребители с линейными (трансформаторными) блоками питания, маломощное (с точки зрения потребляемого тока) сетевое оборудование (репиторы, концентраторы, коммутаторы и др.).

Главными преимуществами таких ИБП являются высокий кпд и простота схемотехнических решений.

Схема ИБП ON-LINE построена по принципу двойного преобразования энергии (рис.3). Входное напряжение через фильтрующие элементы поступает на выпрямитель, затем на инвертор и далее на нагрузку. На входе и выходе этой цепи могут стоять трансформаторные развязки. Аккумуляторная батарея подключена к инвертору и в случае пропадания напряжения на входе сети нагрузка безобрывно переходит на питание от АБ. В случае нарушения работы какого-либо из элементов входное напряжение напрямую коммутируется на нагрузку (режим обхода - bypass mode).

 

Рис.3. Структурная схема источника бесперебойного питания ON-LINE

 

Такая технология имеет свои недостатки: снижение ресурса АБ, относительно низкий кпд, ограниченные динамические и перегрузочные возможности.

Однако бесспорными преимуществами ИБП ON-LINE являются: отсутствие разрыва кривой выходного напряжения при переходе на резервный источник; синусоидальная форма выходного напряжения в любом режиме работы; лучшие, по сравнению с другими ИБП, стабилизационные и помехоподавляющие характеристики. Поэтому такие ИБП находят применение для электропитания файловых серверов, телекоммуникационных систем, в АСУ управления ответственными технологическими комплексами, к которым относятся системы ДЦ, и др.

ИБП группы LINE-INTERACTIVE представляют собой разнообразные гибриды ON-LINE и STANDBY-систем. Их объединяет то, что, являясь системами типа OFF-LINE (прерываемыми) (рис.4, а), они снабжают нагрузку в той или иной степени стабилизированным напряжением при питании от сети.

 

Рис.4. Структурные схемы источника бесперебойного питания LINE-INTERACTIVE

 

По функциональным и схемотехническим признакам интерактивные ИБП можно отнести к одному из трех основных видов:

со ступенчато-апроксимированной формой выходного напряжения при работе от инвертора;

с синусоидальной формой выходного напряжения;

с феррорезонансной стабилизацией выходного напряжения.

ИБП этого семейства оснащены бустерами (booster) - схемами ступенчатого автоматического регулирования входного напряжения вследствие переключения обмоток

автотрансформатора. Большинство интерактивных ИБП заряжают АБ при обратной работе инвертора, что позволяет избавиться от громоздкого ЗУ (см. рис.3 и 4,6). Сам инвертор постоянно подсоединен к выходу, обеспечивая дополнительные стабилизационные функции.

На основе ИБП проектируются системы гарантированного электроснабжения (СБЭ) (рис.5). Под СБЭ понимают комплекс организационно-технических мероприятий, позволяющий обеспечить бесперебойное и качественное электроснабжение нагрузки. Децентрализованные СБЭ предполагают установку большого количества маломощных ИБП для каждого защищаемого прибора (компьютера, коммуникационного узла и т.д.). В случае централизованных СБЭ для центров диспетчерского управления проектируются централизованное преобразование, стабилизация и распределение энергии для питания потребителей. В общем виде подразумевается установка ИБП (одного или нескольких работающих параллельно или в "горячем" резерве) и одного или нескольких дизель-генераторов. Дополнительные фильтры могут быть вынесены непосредственно к нагрузкам. Генераторы комплектуются панелями управления, которые позволяют выполнять их ручное и автоматическое включение и отключение, синхронизацию нескольких генераторов между собой, аварийные остановы, например, при превышении частоты вращения двигателя, перегреве, низком уровне топлива в баке и др.

Переключения нагрузки между внешними сетями электроснабжения (фидерами 1 и 2) и генератором осуществляется с использованием панелей переключения СБЭ.

Для надежной защиты нагрузки АДЦУ СБЭ контролирует параметры электроэнергии, исправность своих звеньев и своевременно реагирует на возникающие аварийные ситуации. Эти функции в системе выполняет программное обеспечение ИБП. Основными задачами ПО с СБЭ являются:

закрытие операционных систем без потери данных;

самодиагностирование ИБП;

контроль параметров электроэнергии;

дистанционное управление ИБП;

мониторинг СБЭ, включая мотор-генераторные установки, коммутационную аппаратуру, ограничители перенапряжений и другое электрооборудование;

прогнозирование возможных сбоев в электроснабжении с целью принятия превентивных мер по обеспечению бесперебойной работы АДЦУ.


Рис.5. Структурная схема системы бесперебойного электроснабжения

 

Способность работы СБЭ даже при возникновении неисправностей достигается резервированием ИБП. В этом случае ИБП включаются параллельно, а при отказе одного из них неисправный отключается, а другой берет на себя электроснабжение всего диспетчерского центра управления.



2019-07-04 213 Обсуждений (0)
Организация электропитания систем 0.00 из 5.00 0 оценок









Обсуждение в статье: Организация электропитания систем

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (213)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)