Мегаобучалка Главная | О нас | Обратная связь


Доменные режимы работы.



2019-07-04 297 Обсуждений (0)
Доменные режимы работы. 0.00 из 5.00 0 оценок




Для доменных режимов работы диода Ганна характерно наличие в образце сформировавшегося дипольного домена в течение значительной части периода колебаний. Характеристики стационарного дипольного домена подробно рассмотрены в [?], где показано, что из (1), (3) и (4) следует, что скорость домена  и максимальная напряженность поля в нем  связаны правилом равных площадей

                                          .                               (5)

 

В соответствии с (5) площади, заштрихованные на рис.5, а и ограниченные линиями , являются одинаковыми. Как видно из рисунка, максимальная напряженность поля  в домене значительно превышает поле  вне домена и может достигать десятков кВ/см.


         Рис.5. К определению параметров дипольного домена.

На рис.5, б приведена зависимость напряжения домена  от напряженности электрического поля вне его, где –длина домена (рис.3, в). Там же построена «приборная прямая» диода длиной  при заданном напряжении  с учетом того, что полное напряжение на диоде . Точка пересечения А определяет напряжение домена  и напряженность поля вне его . Следует иметь в виду, что домен возникает при постоянном напряжении , однако он может существовать и тогда, когда в процессе движения домена к аноду напряжение на диоде уменьшается до значения  (пунктирная линия на рис.5, б). Если еще более понизить напряжение на диоде так, что оно станет меньше напряжения гашения домена , возникший домен рассасывается. Напряжение гашения соответствует моменту касания «приборной прямой» к линии  на рис.5, б.

Таким образом, напряжение исчезновения домена оказывается меньше порогового напряжения формирования домена. Как видно из рис.5, вследствие резкой зависимости избыточного напряжения на домене от напряженности поля вне домена поле вне домена и скорость домена мало изменяются при изменении напряжения на диоде. Избыточное напряжение поглощается в основном в домене. Уже при  скорость домена лишь немного отличается от скорости насыщения и можно приближенно считать , а , поэтому пролетная частота, как характеристика диода, обычно определяется выражением:

                                                                                              (6)

Длина домена зависит от концентрации донорной примеси, а также от напряжения на диоде и при составляет 5–10 мкм. Уменьшение концентрации примеси приводит к расширению домена за счет увеличения обедненного слоя. Формирование домена происходит за конечное время  и связано с установлением отрицательной дифференциальной проводимости и с нарастанием объемного заряда. Постоянная времени нарастания объемного заряда в режиме малого возмущения равна постоянной диэлектрической релаксации и определяется отрицательной дифференциальной подвижностью и концентрацией электронов . При максимальном значении , тогда как время установления ОДП менее . Таким образом, время формирования домена определяется в значительной степени процессом перераспределения объемного заряда. Оно зависит от начальной неоднородности поля, уровня легирования и приложенного напряжения.

 


Рис6. Диод Ганна.

 

Приближенно считают, что Домен успеет полностью сформироваться за время:

                                 ,                             (7)

где  выражено в . Говорить о доменных режимах имеет смысл только в том случае, если домен успеет сформироваться за время пролета электронов в образце . Отсюда условием существования дипольного домена является  или .

Значение произведения концентрации электронов на длину образца  называют критическим и обозначают . Это значение является границей доменных режимов диода Ганна и режимов с устойчивым распределением электрического поля в однородно легированном образце. При  домен сильного поля не образуется и образец называют стабильным. При  возможны различные доменные режимы. Критерий типа  справедлив, строго говоря, только для структур, у которых длина активного слоя между катодом и анодом много меньше поперечных размеров:  (рис.6, а), что соответствует одномерной задаче и характерно для планарных и мезаструктур. У тонкопленочных структур (рис.6, б) эпитаксиальный активный слой GaAs 1 длиной  может быть расположен между высокоомной подложкой 3 и изолирующей диэлектрической пленкой 2, выполненной, например, из SiO2. Омические анодный и катодный контакты изготовляют методами фотолитографии. Поперечный размер диода  может быть сравним с его длиной . В этом случае образующиеся при формировании домена объемные заряды создают внутренние электрические поля, имеющие не только продольную компоненту , но и поперечную компоненту  (рис.6, в). Это приводит к уменьшению поля по сравнению с одномерной задачей. При малой толщине активной пленки, когда , критерий отсутствия доменной неустойчивости  заменяется на условие . Для таких структур  при устойчивом распределении электрического поля может быть больше .

Время формирования домена не должно превышать полупериода СВЧ-колебаний. Поэтому имеется и второе условие существования движущегося домена , из которого с учетом (1) получаем .

В зависимости от соотношения времени пролета и периода СВЧ-колебаний, а также от значений постоянного напряжения  и амплитуды высокочастотного напряжения  могут быть реализованы следующие доменные режимы: пролетный, режим с задержкой домена, режим с подавлением (гашением) домена. Процессы, происходящие в этих режимах, рассмотрим для случая работы диода Ганна на нагрузку в виде параллельного колебательного контура с активным сопротивлением  на резонансной частоте и питанием диода от генератора напряжения с малым внутренним сопротивлением (см. рис.4,а). При этом напряжение на диоде изменяется по синусоидальному закону. Генерация возможна при .

При малом сопротивлении нагрузки, когда , где –сопротивление диода Ганна в слабых полях, амплитуда высокочастотного напряжения  невелика и мгновенное напряжение на диоде превышает пороговое значение (см. рис.4,б кривая 1). Здесь имеет место рассмотренный ранее пролетный режим, когда после формирования домена ток через диод остается постоянным и равным  (см. рис. 9.39, в). При исчезновении домена ток возрастает до . Для GaAs . Частота колебаний в пролетном режиме равна . Так как отношение  мало, к.п.д. генераторов на диоде Ганна, работающих в пролетном режиме, невелик и этот режим обычно не имеет практического применения.

При работе диода на контур с высоким сопротивлением, когда , амплитуда переменного напряжения  может быть достаточно большой, так что в течение некоторой части периода мгновенное напряжение на диоде становится меньше порогового (соответствует кривой 2 на рис.4,б). В этом случае говорят о режиме с задержкой формирования домена. Домен образуется, когда напряжение на диоде превышает пороговое, т. е. в момент времени (см. рис.4, г). После образования домена ток диода уменьшается до  и остается таким в течение времени пролета  домена. При исчезновении домена на аноде в момент времени  напряжение на диоде меньше порогового и диод представляет собой активное сопротивление . Изменение тока пропорционально напряжению на диоде до момента , когда ток достигает максимального значения , а напряжение на диоде равно пороговому. Начинается образование нового домена, и весь процесс повторяется. Длительность импульса тока равна времени запаздывания образования нового домена . Время формирования домена считается малым по сравнению с  и . Очевидно, что такой режим возможен, если время пролета находится в пределах  и частота генерируемых колебаний составляет .

При еще большей амплитуде высокочастотного напряжения, соответствующей кривой 3 на рис.4,б, минимальное напряжение на диоде может оказаться меньше напряжения гашения диода .В этом случае имеет место режим с гашением домена (см. рис.4, д). Домен образуется в момент времени  и рассасывается в момент времени , когда .Новый домен начинает формироваться после того, как напряжение превысит пороговое значение. Поскольку исчезновение домена не связано с достижением им анода, время пролета электронов между катодом и анодом в режиме гашения домена может превышать период колебаний: . Таким образом, в режиме гашения . Верхний предел генерируемых частот ограничен условием  и может составлять .

Электронный к.п.д. генераторов на диодах Ганна, работающих в доменных режимах, можно определить, раскладывая в ряд Фурье функцию тока  (см. рис.4) для нахождения амплитуды первой гармоники и постоянной составляющей тока. Значение к.п.д. зависит от отношений , , ,  и при оптимальном значении  не превышает для диодов из GaAs 6% в режиме с задержкой домена. Электронный к.п.д. в режиме с гашением домена меньше, чем в режиме с задержкой домена.

 

 

Режим ОНОЗ.

Несколько позднее доменных режимов был предложен и осуществлен для диодов Ганна режим ограничения накопления объемного заряда. Он существует при постоянных напряжениях на диоде, в несколько раз превышающих пороговое значение, и больших амплитудах напряжения на частотах, в несколько раз больших пролетной частоты. Для реализации режима ОНОЗ требуются диоды с очень однородным профилем легирования. Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде. Если промежуток времени, в течение которого напряженность электрического поля проходит область ОДП характеристики , много меньше времени формирования домена , то не происходит заметного перераспределения поля и объемного заряда по длине диода. Скорость электронов во всем образце «следует» за изменением электрического поля, а ток через диод определяется зависимостью скорости от поля (рис.7).

Таким образом, в режиме ОНОЗ для преобразования энергии источника питания в энергию СВЧ-колебаний используется отрицательная проводимость диода. В этом режиме в течение части периода колебаний длительностью  напряжение на диоде остается меньше порогового и образец находится в состоянии, характеризуемом положительной подвижностью электронов, т. е. происходит рассасывание объемного заряда, который успел образоваться за время, когда электрическое поле в диоде было выше порогового.

Условие слабого нарастания заряда за время  приближенно запишем в виде , где ; –среднее значение отрицательной дифференциальной подвижности электронов в области . Рассасывание объемного заряда за время , будет эффективным, если  и , где ;  и –постоянная времени диэлектрической релаксации и подвижность электронов в слабом поле.

Считая , , имеем . Это неравенство определяет интервал значений , в пределах которого реализуется режимОНОЗ.

Электронный к. п. д. генератора на диоде Ганна в режиме ОНОЗ можно рассчитать по форме тока (рис.7). При  максимальный к. п. д. составляет 17%.

 


Рис.7. Временная зависимость тока на диоде Ганна в режиме ОНОЗ.

 

В доменных режимах частота генерируемых колебаний примерно равна пролетной частоте. Поэтому длина диодов Ганна, работающих в доменных режимах, связана с рабочим диапазоном частот выражением

                                                        ,                                           (8)

где  выражена в ГГц, а –в мкм. В режиме ОНОЗ длина диода не зависит от рабочей частоты и может во много раз превышать длину диодов, работающих на тех же частотах в доменных режимах. Это позволяет значительно увеличивать мощность генераторов в режиме ОНОЗ по сравнению с генераторами, работающими в доменных режимах.

Рассмотренные процессы в диоде Ганна в доменных режимах являются, по существу, идеализированными, так как реализуются на сравнительно низких частотах (1–3 ГГц), где период колебаний значительно меньше времени формирования домена, а длина диода много больше длины домена при обычных уровнях легирования . Чаще всего диоды Ганна в непрерывном режиме используют на более высоких частотах в так называемых гибридных режимах. Гибридные режимы работы диодов Ганна являются промежуточными между режимами ОНОЗ и доменным. Для гибридных режимов характерно, что образование домена занимает большую часть периода колебаний. Не полностью сформировавшийся домен рассасывается, когда мгновенное напряжение на диоде снижается до значений, меньших порогового. Напряженность электрического поля вне области нарастающего объемного заряда остается в основном больше порогового. Процессы, происходящие в диоде в гибридном режиме, анализируют с применением ЭВМ при использовании уравнений (1), (3) и (4). Гибридные режимы занимают широкую область значений  и не столь чувствительны к параметрам схемы, как режим ОНОЗ.

РежимОНОЗ и гибридные режимы работы диода Ганна относят к режимам с «жестким» самовозбуждением, для которых характерна зависимость отрицательной электронной проводимости от амплитуды высокочастотного напряжения. Ввод генератора в гибридный режим (как и в режимОНОЗ) представляет сложную задачу и обычно осуществляется последовательным переходом диода из пролетного режима в гибридные.

 

 

 

Рис.8. Электронный к. п. д. генераторов на диоде Ганна из GaAs для различных режимов работы:

1–с задержкой формирования домена

2–с гашением домена

 

Рис.9. Временная зависимость напряжения (а) и тока (б) диода Ганна в режиме повышенного к. п. д.

3–гибридный

4–ОНОЗ

 



2019-07-04 297 Обсуждений (0)
Доменные режимы работы. 0.00 из 5.00 0 оценок









Обсуждение в статье: Доменные режимы работы.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (297)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.013 сек.)