Мегаобучалка Главная | О нас | Обратная связь


Вопрос 1 Объединения нейронов в ЦНС как один из функциональных принципов организации работы мозга. Нервный центр, нейронные цепи, нейронные сети Нейронные ансамбли.



2019-07-03 890 Обсуждений (0)
Вопрос 1 Объединения нейронов в ЦНС как один из функциональных принципов организации работы мозга. Нервный центр, нейронные цепи, нейронные сети Нейронные ансамбли. 0.00 из 5.00 0 оценок




ОБЪЕДИНЕНИЕ НЕЙРОНОВ

Существует большая терминологическая путаница в отношении того, как называть объединение нейронов. Например, есть понятия «нервный центр» — его можно определить как комплекс нейронов, сосредоточенных в одном месте ЦНС (например, дыхательный центр), и такое объединение основано на чисто анатомических принципах, «нейронные цепи» — последовательно соединенные нейроны, которые выполняют определенную задачу. С этой точки зрения «рефлекторная дуга» — тоже нейронные цепи. «Нейронные сети» — понятие более обширное, так как помимо последовательных цепей нейронов имеются параллельные цепи, а также связи между последовательными и параллельными цепями; нейронные сети — это структуры, которые выполняют сложные задачи, например, сенсорные сети выполняют задачу по обработке информации. Наиболее часто используется понятие «рефлекторная дуга» — именно она лежит в основе элементарного функционального акта ЦНС. В ней обычно последовательно соединены афферентные, вставочные и эфферентные нейроны.

1.Понятие нервных центров

Нервный центр — центральный компонент рефлекторной дуги, где происходит переработка информации, вырабатывается программа действия, формируется эталон результата.

2.Свойства нервных центров

1)Одностороннее проведение возбуждения — возбуждение передается с афферентного на эфферентный нейрон. Причина: клапанное свойство синапса.

2)Задержка проведения возбуждения: скорость проведения возбуждения в нервном центре на много ниже таковой по остальным компонентам рефлекторной дуги. Чем сложнее нервный центр, тем дольше проходит по нему нервный импульс. Причина: синаптическая задержка. Время проведения возбуждения через нервный центр — центральное время рефлекса.

3)Суммация возбуждения — при действии одиночного подпорогового раздражителя ответной реакции нет. При действии нескольких подпороговых раздражителей ответная реакция есть. Рецептивное поле рефлекса — зона расположения рецепторов, возбуждение которых вызывает определенный рефлекторный акт.

Имеется 2 вида суммации: временная и пространственная.

Временная суммация — возникает ответная реакция при действии нескольких следующих друг за другом раздражителей. Механизм: суммируются возбуждающие постсинаптические потенциалы рецептивного поля одного рефлекса. Происходит суммация во времени потенциалов одних и тех же групп синапсов.

Пространственная суммация — возникновение ответной реакции при одновременном действии нескольких подпороговых раздражителей. Механизм: суммация возбуждающего постсинаптического потенциала от разных рецептивных полей. Суммируются потенциалы разных групп синапсов.

4)Центральное облегчение — объясняется особенностями строения нервного центра. Каждое афферентное волокно входя в нервный центр иннервирует определенное количество нервных клеток. Эти нейроны — нейронный пул. В каждом нервном центре много пулов. В каждом нейронном пуле — 2 зоны: центральная (здесь афферентное волокно над каждым нейроном образует достаточное для возбуждения количество синапсов), периферическая или краевая кайма (здесь количество синапсов недостаточно для возбуждения). При раздражении возбуждаются нейроны центральной зоны. Центральное облегчение: при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть больше арифметической суммы раздражения каждого из них, т. к. импульсы от них отходят к одним и тем же нейронам периферической зоны.

5)Окклюзия — при одновременном раздражении 2-х афферентных нейронов ответная реакция может быть меньше арифметической суммы раздражения каждого из них. Механизм: импульсы сходятся к одним и тем же нейронам центральной зоны. Возникновение окклюзии или центрального облегчения зависит от силы и частоты раздражения. При действии оптимального раздражителя, (максимального раздражителя (по силе и частоте) вызывающего максимальную ответную реакцию) — появляется центральное облегчение. При действии пессимального раздражителя (с силой и частотой вызывающих снижение ответной реакции) — возникает явление окклюзии.

5)Посттетаническая потенция — усиление ответной реакции, наблюдается после серии нервных импульсов. Механизм: потенциация возбуждения в синапсах;

6)Рефлекторное последействие — продолжение ответной реакции после прекращения действия раздражителя:

кратковременное последействие — в течение нескольких долей секунды. Причина — следовая деполяризация нейронов;

длительное последействие — в течение нескольких секунд. Причина: после прекращения действия раздражителя возбуждение продолжает циркулировать внутри нервного центра по замкнутым нейронным цепям.

7)Трансформация возбуждения — несоответствие ответной реакции частоте наносимых раздражений. На афферентном нейроне происходит трансформация в сторону уменьшения из-за низкой лабильности синапса. На аксонах эфферентного нейрона, частота импульса больше частоты наносимых раздражений. Причина: внутри нервного центра образуются замкнутые нейронные цепи, в них циркулирует возбуждение и на выход из нервного центра импульсы подаются с большей частотой.

8)Высокая утомляемость нервных центров — связана с высокой утомляемостью синапсов.

Тонус нервного центра — умеренное возбуждение нейронов, которое регистрируется даже в состоянии относительного физиологического покоя. Причины: рефлекторное происхождение тонуса, гуморальное происхождение тонуса (действие метаболитов), влияние вышележащих отделов центральной нервной системы.

Вопрос 2 Изосерологические системы крови человека. Групповая система АВО и система резус – характеристика антигенов и антител и методы определения групповой и резус-принадлежности.

ГРУППОВАЯ СИСТЕМА АВО.

С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для больного. К. Ландштейнер впервые обнаружил, что плазма одних людей способна склеивать эритроциты других людей. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых α и β. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β.

Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агглютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов.

В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае происходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или четыре группы крови:

I — αβ,

II — Aβ,

III — Вα,

IV — АВ.

Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины: их также два вида и они обозначаются, как и агглютинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37—40 οС. Вот почему при переливании несовместимой крови у человека уже через 30—40 с. наступает гемолиз эритроцитов.

Для решения вопроса о совместимости групп крови пользуются следующим правилом:

среда реципиента должна быть пригодна для жизни эритроцитов донора. Такой средой является плазма, следовательно, у реципиента должны учитываться агглютинины и гемолизины, находящиеся в плазме, а у донора — агглютиногены, содержащиеся в эритроцитах.

Кровь I группы совместима со всеми другими группами крови, поэтому человек, имеющий I группу крови, называется универсальным донором. С другой стороны, эритроциты IV группы крови не должны давать реакции агглютинации при смешивании с плазмой людей с любой группой крови, поэтому люди с IV группой крови называются универсальными реципиентами.

В повседневной практике для решения вопроса о группе переливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруппной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови.

СИСТЕМА РЕЗУС

Существуют две основных номенклатуры обозначения антигенов этой системы: по Ландштейнеру и Винеру и по Фишеру Р. и Раису Р. Современная номенклатура — это совмещение двух номенклатур. Антигены Современныйвариант: Rho (D): rh’(C): rhu(E): Нго (d): hr’(c): hr”(e)

Наиболее активным в антигенном отношении является антиген D, в меньшей степени — СиЕ, а тем более d, с, е. Реципиент имеет резус-положительную кровь, если его эритроциты обязательно содержат антиген D. Антиген D выявляется у 86% людей, С — у 70,8%, Е — у 31,0%, d — у 99%, с -*иу 84%; е — у 86%. Учитывая, что антиген D определяет принадлежность людей к группе резус-положительных, таких людей среди европейцев много — 86%, у представителей монгольской расы — 100%. Антиген D является основной причиной сенсибилизации (иммунизации) во время бере-менности и гемолитической болезни новорожденных, он легко проникает через плаценту.

В настоящее время известны и другие факторы резус-системы. Из них особый интерес представляет вариант фактора D, который обозначается D . Он не всегда определяется в эритро-

цигах, но в ответ на его введение у резус-отрицательного человека вырабатывается анги-D. Поэтому у резус-отрицательного человека необходимо определить и отсутствие антигена D".

В эритроците антигены системы резус находятся в виде группы антигенов. Наиболее частые комбинации такие: CDE — 16%, CDe — 53%, cDE — 15%, cde — 12%. У аборигенов Австралии в эритроцитах не выявлен ни один представитель системы резус. Такой вариант называют резус-нуль.

Для определения резус-принадлежности, т.е. выявления антигенов системы резус в эритроцитах используют стандартные сыворотки (реагенты) антирезус, различные по специфичности, т.е. содержащие антитела к разным антигенам этой системы. Для определения антигена D чаще всего применяют сыворотку антирезус с добавлением 10% раствора желатина или используют стандартный реагент антирезус, приготовленный заранее с 33% раствором полиглкжина.

 

Антигенами называются структурно чужеродные для данного конкретного организма вещества (высокомолекулярные соединения - белки и полисахариды), способные вызвать иммунный ответ (начальные слоги двух слов: "АНТИтела ГЕНерация"). Носителями таких чужеродных веществ будут бактерии, вирусы, грибки, трансплантаты, опухолевые клетки.

Антигены состоят из крупной неспецифической молекулы - переносчика (полисахарида, белка или липида с молекулярным весом более 10 000) и расположенных на поверхности этой молекулы детерминантных групп ( антигенных детерминант ), обусловливающих серологическую специфичность антигена. Детерминантные группы, отделенные от макромолекулы - переносчика, называются гаптенами . Гаптены приобретают иммуногенность лишь после соединения с высокомолекулярным белком-носителем. Гаптены не могут стимулировать выработку антител, но могут связываться с ними. Следует подчеркнуть, что иммуногенность - комплексная характеристика, которая зависит от свойств самого антигена, пути его введения и способа иммунизации. Они реагируют с соответствующими (гомологичными) антителами, но не запускают синтез новых антител.

Термин антиген используется в двух случаях.

Во-первых, так называют молекулы, которые индуцируют иммунный ответ. Эти молекулы еще называют иммуногенами .

Во-вторых, антигенами называют молекулы, которые реагируют с антителами илипримированными T-лимфоцитами . При этом не имеет значения, способны ли эти молекулы сами по себе индуцировать образование таких антител или T-лимфоцитов.

Два значения слова "антиген" не всегда совпадают.

Гаптены имеют по одному эпитопу, тогда как полисахариды и гомополимеры имеют множественное число эпитопов одной и той же специфичности. Белки несут на своей поверхности множество эпитопов, но уже разной специфичности.

Если антиген - линейный пептид или полисахарид, то во взаимодействии с антителом принимают участие около 5-6 аминокислотных остатков или молекул гексозы, соответственно. Если же антиген - глобулярный белок, то с антителом может контактировать до 16 аминокислотных остатков.

Если схематически изобразить поверхность белкового антигена и отметить на ней центры эпитопов, выявлямых с помощью индивидуальных антител, входящих в данную сыворотку, то на этой карте можно будет выявить кластеры доминантных эпитопов. Именно эти кластеры можно определить как антигенные детерминанты . Важно иметь в виду, что на поверхности антигена может находиться несколько антигенных детерминант различной структуры.

Основные классы антигенов - это углеводы ( полисахариды ), липиды , нуклеиновые кислоты и белки. Антитела – специфические белки гамма- глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном

Основные биологические характеристики антител.

1. Специфичность – способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).

2. Валентность- количество способных реагировать с антигеном активных центров ( это связано с молекулярной организацией- моно- или полимер). Иммуноглобулины могут быть двухвалентными ( IgG ) илиполивалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела навываютполными антителами. Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр ( блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.

3. Афинность – прочность связи между эпитопом антигена и активным центром антител, зависит от их пространственного соответствия.

4. Авидность – интегральная характеристика силы связи между антигеном и антителами, с учетом взаимодействия всех активных центров антител с эпитопами. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител.

5. Гетерогенность – обусловлена антигенными свойствами антител, наличием у них трех видов антигенных детерминант:

- изотипические – принадлежность антител к определенному классу иммуноглобулинов;

- аллотипические- обусловлены аллельными различиями иммуноглобулинов, кодируемых соответствующими аллелями Ig гена;

- идиотипические- отражают индивидуальные особенности иммуноглобулина, определяемые характеристиками активных центров молекул антител. Даже тогда, когда антитела к конкретному антигену относятся к одному классу, субклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга (идиотипом). Это зависит от особенностей строения V- участков H- и L- цепей, множества различных вариантов их аминокислотных последовательностей.



2019-07-03 890 Обсуждений (0)
Вопрос 1 Объединения нейронов в ЦНС как один из функциональных принципов организации работы мозга. Нервный центр, нейронные цепи, нейронные сети Нейронные ансамбли. 0.00 из 5.00 0 оценок









Обсуждение в статье: Вопрос 1 Объединения нейронов в ЦНС как один из функциональных принципов организации работы мозга. Нервный центр, нейронные цепи, нейронные сети Нейронные ансамбли.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (890)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)