Мегаобучалка Главная | О нас | Обратная связь


Объединенные системы впрыска и зажигания



2019-07-03 201 Обсуждений (0)
Объединенные системы впрыска и зажигания 0.00 из 5.00 0 оценок




 

Внедрение электроники в управление системами зажигания и питания привело к созданию объединенного или центрального электронного управления двигателем. Объединенное электронное устройство называют микроЭВМ, микропроцессор или контроллер.

У нас первые системы объединенного управления появились на карбюраторных автомобилях ВАЗ-2108, -2109 и назывались МСУД (микропроцессорная система управления двигателем). Системы эти выполняют довольно скромную задачу и предназначаются только для управления зажиганием (моментом и энергией искрообразования) и электромагнитным клапаном карбюратора.

Системы объединенного электронного управления впрыском (смесеобразованием) и зажиганием имеют следующие преимущества:

совмещение функций агрегатов и датчиков позволяет сократить их число;

процессы зажигания и смесеобразования оптимизируются совместно, при этом улучшаются характеристики крутящего момента, расхода топлива, состава отработавших газов, облегчается пуск и прогрев холодного двигателя;

открываются большие возможности для выполнения других функций: управление автоматической коробкой передач, противобуксовочной системой ведущих колес, антиблокировочной тормозной системой, кондиционером, противоугонным устройством и т.п.

Прежде чем перейти к рассмотрению объединенной системы электронного управления обратим внимание на функциональную структуру этой системы и названия ее составных частей, (рис. 50).

В контроллер от датчиков поступают аналоговые сигналы 1—11, (см. рис. 50), (греч. аналогиа — соответствие, сходство, подобие). Или, другими словами, к контроллеру "подаются" не непосредственно температура, давление и т.д., а их электрический аналог — ток, с соответствующим образом изменяющимися параметрами (напряжение, сила).

В общем случае изменение токов и напряжений происходит непрерывно по тому или иному закону, например по синусоидальному. Интегральные схемы микропроцессоров ЭВМ характеризуются тем, что они работают в импульсном режиме и могут находиться только в одном из двух состояний — согласно используемой в современных ЭВМ двоичной системе счисления (только две цифры — ноль и единица). Поэтому сигналы датчиков сначала преобразуются в "более четкие" аналоговые сигналы, которые в свою очередь в аналого-цифровом преобразователе 12, (см. рис. 50), превращаются в цифровую информацию.

 

Рис. 50. Функциональная схема электронного управления двигателем входные сигналы:

1 — угловое положение коленчатого вала, 2 — частота вращения коленчатого вала двигателя, 3 — объем всасываемого воздуха, 4 — температура всасываемого воздуха, 5 — температура охлаждающей жидкости, 6 — напряжение аккумуляторной батареи, 7 — положение дроссельной заслонки, 8— информация о режиме пуска, 9 — жесткость сгорания, детонация, 10 — состояние двигателя, компрессия, 11 — лямбда-зонд. Элементы системы: 12 — аналого-цифровой преобразователь, 13 — микропроцессор, входные и выходные схемы, 14, 15 — постоянный и промежуточный блоки памяти, 16, 17 — каскады усиления, 18 — система питания, 19 — система зажигания

 

Микропроцессор 13 обрабатывает полученную информацию по программе заложенной в блоке памяти 14 с использованием блока оперативной памяти 15.

Выходные сигналы микроЭВМ не могут быть использованы для непосредственного управления зажиганием, форсунками, насосом в связи с их малой мощностью. Только после прохождения их через выходные каскады усиления 16, 17 они превращаются в команды (электрические сигналы) воздействующие на системы питания и зажигания.

 

СИСТЕМЫ "MOTRONIC"

 

Система "Motronic" является системой объединяющей электронные устройства смесеобразования и зажигания. В систему "Motronic" могут быть включены различные системы впрыска, например, "Мопо-Jetronic", "KE-Jetronic", " L-Jetronic" и т.д.

 

"MOHO-MOTRONIC"

 

На легковых автомобилях массового выпуска применяют более простые и дешевые системы, например, "Mono-Motronic", (рис. 51). Ее устанавливают на двигателях небольшого рабочего объема автомобилей малого и особо малого класса.

В системе "Mono-Motronic", в отличие от более сложных систем, основные сигналы зависят от положения дроссельной заслонки и частоты вращения коленчатого вала двигателя. Кроме того, учитываются сигналы от кислородного датчика, а также датчиков температуры охлаждающей жидкости и всасываемого воздуха. Рассчитанное микроЭВМ требуемое количество топлива посредством центральной электромагнитной форсунки периодически впрыскивается над дроссельной заслонкой и смешивается с воздухом. С учетом этих же данных, но по другой программе, управляющие импульсы подаются на катушку зажигания.

Система способна учитывать износ цилиндро-поршневой группы двигателя (падение компрессии) и изменение атмосферного давления. Если датчики начинают подавать ошибочные сигналы, информация об этом накапливается в памяти. Во время технического обслуживания она считывается диагностическим тестером, что позволяет быстро найти источник неисправности.

 

Рис. Система "Mono-Motronic":

1 — электронный блок управления, 2 — катушка (катушки) зажигания, 3 — электрический топливный насос, 4 — регулятор холостого хода, 5 — датчик положения дроссельной заслонки, 6 — электромагнитная форсунка, 7 — датчик температуры охлаждающей жидкости, 8 — датчик частоты вращения двигателя, 9 — разъем для диагностики, 10 — кислородный датчик ("лямбда-зонд"), 11 — емкость с активированным углем для сбора паров бензина (адсорбер), 12 — распределитель бесконтактного электронного зажигания, 13 — диффузор с датчиком температуры всасываемого воздуха, 14 — регулятор давления топлива, 15 — возвратный топливный клапан, 16 — топливный фильтр

 


"MOTRONIC 1.1—1.3"

 

Цифровые системы управления двигателем "M1.1", M1.2" и "М1.3" объединяют (интегрируют) в себе системы впрыска топлива и зажигания, (рис. 52). Обе системы управляются одним контроллером, представляющим собой специализированную цифровую микро-ЭВМ. В системах "M1.1—Ml.3" используется электронная система зажигания, объединенная в системах "M1.1" и "M1.2" с системой впрыска "L-Jetronic", а в системе "М1.3" с системой "LE-Jetronic". Единый для обеих систем контроллер вычисляет оптимальные углы опережения зажигания в зависимости от сигналов, выдаваемых датчиками.

Каждой модели двигателя соответствует определенный тип контроллера. Поэтому при его замене обязательно убедитесь в соответствии типа нового контроллера двигателю данной модели!

Количество впрыскиваемого топлива определяется контроллером в зависимости от информации, выдаваемой датчиками, измеряющими следующие параметры: объем и температуру всасываемого воздуха, частоту вращения коленчатого вала двигателя, нагрузку двигателя и температуру охлаждающей жидкости. Основным параметром, определяющим дозировку топлива, является объем всасываемого воздуха, измеряемый расходомером воздуха, (см. рис. 37). Поступающий воздушный поток отклоняет измерительную заслонку на определенный угол, который преобразуется потенциометром в электрический сигнал, выдаваемый на контроллер. Последний определяет количество топлива, необходимое в данный момент для работы двигателя, и выдает на электромагнитные форсунки импульсы времени подачи топлива.

Частота вращения коленчатого вала двигателя на холостом ходу поддерживается постоянной с помощью выключателя 9 (потенциометра) дроссельной заслонки, (см. рис. 52).

Значения углов опережения зажигания, заложенные в запоминающее устройство (блок памяти) контроллера, сравниваются с действительными значениями и соответствующим образом корректируются, что позволяет исключить нарушения режима работы двигателя в результате механического износа деталей, появления негерметичности впускного тракта, изменения компрессии и т.п.

На автомобилях с автоматической коробкой передач частота вращения коленчатого вала двигателя на холостом ходу регулируется в зависимости от включенной передачи.

Аналогично регулируется режим холостого хода на автомобилях, оборудованных кондиционером.

Как только частота вращения коленчатого вала двигателя достигает максимально допустимого значения, по команде контроллера подача топлива к форсункам прерывается.

В начальный момент пуска холодного двигателя в цилиндры впрыскивается увеличенное количество топлива. Впрыск происходит три раза в каждую группу цилиндров (первый, третий, пятый и второй, четвертый, шестой; или первый, четвертый и второй, третьей группы соответственно для 6-ти и 4-х цилиндровых двигателей) в течение первых трех оборотов коленчатого вала.

Степень обогащения рабочей смеси определяется температурой охлаждающей жидкости.

 

Рис. Схема цифровой системы управления двигателем "Motronic 1.1—1.3":

1 — топливный бак, 2 — топливный насос, 3 — топливный фильтр, 4 — регулятор давления топлива, 5 — катушка зажигания, 6 — измеритель расхода воздуха, 7 — форсунка, 8 — распределитель зажигания, 9 — выключатель (потенциометр) дроссельной заслонки, 10 — контроллер, 11 — поворотный регулятор холостого хода, 12 — датчик температуры охлаждающей жидкости, 13 — датчик числа оборотов коленчатого вала двигателя, 14 — накопитель топлива с активированным углем, 15 — клапан вентиляции, 16 — реле включения топливного насоса

 

Во время пуска холодного двигателя начальная подача топлива через форсунки уменьшается в зависимости от температуры охлаждающей жидкости и частоты вращения коленчатого вала, чтобы избежать переобогащения рабочей смеси. Если в течение одной минуты предпринимается несколько попыток запустить двигатель, количество впрыскиваемого топлива уменьшается по сравнению с начальным моментом пуска.

После запуска двигателя (начиная с частоты вращения коленчатого вала 600 об/мин) впрыск топлива происходит лишь один раз за оборот коленчатого вала в одну из двух групп цилиндров, т.е. во второй, четвертый и шестой (первый, четвертый) цилиндры при первом обороте коленчатого вала и в первый, третий, пятый (второй, третий) цилиндры при втором обороте.

Во время прогрева двигателя (до того, как температура охлаждающей жидкости достигает 70°С) продолжительность впрыска топлива также увеличивается в зависимости от частоты вращения и температуры охлаждающей жидкости согласно введенной в контроллер программе.

Каждая из групп форсунок (6-ти цилиндровый двигатель — вторая, четвертая, шестая и первая, третья, пятая) управляется отдельным выходным каскадом усиления тока. Это позволяет разделить цикл впрыска топлива по двум группам цилиндров. Тем самым обеспечивается работа двигателя даже в случае выхода из строя системы зажигания группы цилиндров.

Как только частота вращения коленвала превысит 600 об/мин, впрыск топлива происходит только один раз за два оборота коленчатого вала в одну из групп цилиндров. В шестицилиндровом двигателе такой вид управления впрыском возможен только, если контроллер получает сигнал от датчика момента зажигания, установленного на свечном проводе шестого цилиндра. Если датчик момента зажигания не выдает сигнал на контроллер, происходит одновременный впрыск через все форсунки при каждом обороте коленчатого вала.

В системе "Motronic 1.3" на автомобилях с автоматической коробкой передач с гидравлическим управлением предусмотрена блокировка принудительного включения низшей передачи. Начиная с определенной скорости движения автомобиля, в зависимости от типа двигателя и передаточного числа главной передачи, переключение с IV на III передачу блокируется контроллером, который выключает один из электромагнитных клапанов автоматической коробки передач.

 

"MOTRONIC 1.7"

 

Система "Motronic 1.7" является модификацией системы "Motronic 1.3". Основное отличие модифицированной системы заключается в использовании устройства распределения зажигания без подвижных частей, что обусловило применение четырех (4-цилиндровый двигатель) выходных каскадов зажигания вместо одного, как в традиционных системах. Такая система зажигания получила название — полностью электронная "статическая".

Если обратиться к рис, то можно обнаружить следующие отличия системы "М 1.7" от "М 1.3":

вместо выключателя дроссельной заслонки 9 устанавливается потенциометр,

вместо общей катушки зажигания 5 устанавливается по одной катушке на каждый цилиндр,

отсутствует распределитель зажигания.

Полностью электронная "статическая" система зажигания, когда катушка зажигания каждого цилиндра управляется своим выходным каскадом контроллера, позволяет не только выдавать на свечи зажигания ток высокого напряжения, достигающего 32 кВ, но и быстро изменять угол опережения зажигания в каждом цилиндре.

Кроме того, диапазон регулирования угла опережения зажигания увеличен примерно на 10° и составляет 59° (по коленчатому валу) для каждого цилиндра. Для контроля за очередностью работы цилиндров в системе "М 1.7" используется датчик углового положения распределительного вала.

При рассматриваемой системе зажигания рекомендуется применение свечей с тремя "массовыми" электродами, например, BOSCH SUPER W7DTC. Их рекомендуется заменять через 30 тыс. км, тогда как с одним электродом, например, BOSCH SUPER W7DC, через 15 тыс. км.

 

"MOTRONIC 3.1"

 

Система "Motronic 3.1" является модификацией системы "Motronic 1.7". Основные различия между этими системами заключаются в следующем:

увеличена производительность контроллера;

применен измеритель массы воздуха термоанемометрического типа, с нагреваемым проводником;

применен последовательный режим впрыска топлива.

Каждая форсунка управляется отдельным выходным каскадом контроллера. Этим достигается высокая точность дозировки впрыскиваемого топлива и быстрая реакция системы на изменения нагрузки двигателя.

Во время и сразу же после пуска двигателя (начиная с частоты вращения коленчатого вала около 600 об/мин) впрыск топлива происходит отдельно в каждый цилиндр через каждые 120° угла поворота коленчатого вала (три раза за один оборот).

На автомобилях с автоматической коробкой передач система "М 3.1" получает сигнал об установке рычага селектора в положение "I", "II", "III" или "D" и регулятор холостого хода увеличивает подачу топлива, чтобы компенсировать падение оборотов коленчатого вала двигателя в результате включения гидротрансформатора крутящего момента.

На автомобилях с кондиционером после получения контроллером сигнала включения кондиционера, он начинает следить за режимом холостого хода корректируя частоту вращения коленчатого вала при включении компрессора кондиционера.

На автомобилях с нейтрализатором отработавших газов по сигналу ^-зонда контроллер системы "М 3.1", в зависимости от того рабочая смесь переобогащена или переобеднена, соответствующим образом изменяет продолжительность впрыска топлива и, следовательно, состав топливовоздушной смеси.

При выходе из строя датчика концентрации кислорода корректировка состава смеси осуществляется по величине, принимаемой "по умолчанию" (0,45 В), запрограммированной в контроллере. При этом регулировка содержания окиси углерода (СО) в отработавших газах не требуется.

Клапан вентиляции топливного бака 15, с адаптивным управлением (лат. adaptatio — приспособление) работает так. Пары топлива из топливного бака 1 подаются в двигатель через фильтр 16 с активированным углем с некоторым количеством наружного воздуха. В трубопроводе, идущему к впускному коллектору, установлен клапан, который дросселирует или свободно пропускает поток паров топлива в зависимости от режима работы двигателя.


Рис. Схема цифровой системы управления двигателем "Motronic 3.1":

1 — топливный бак, 2 — топливный насос, 3 — топливный фильтр, 4 — регулятор давления топлива, 5 — катушка зажигания, 6 — измеритель массы воздуха с нагреваемым проводником, 7 — форсунка, 8 — свеча зажигания, 9 — потенциометр дроссельной заслонки, 10 — контроллер, 11 — поворотный регулятор холостого хода, 12 — датчик температуры охлаждающей жидкости, 13 — датчик детонации, 14 — датчик числа оборотов двигателя, 15 — клапан вентиляции топливного бака, 16 — адсорбер (емкость с активированным углем)

 

Клапан работает циклично и управляется контроллером 10 в зависимости от оборотов и нагрузки двигателя (положения дроссельной заслонки). Пока клапан находится под напряжением (более 10 В), трубопровод, идущий к впускному коллектору, закрыт. При снятии напряжения с клапана он может открыться под действием разрежения во впускном коллекторе.

Цикл удаления паров топлива начинается с включения в работу датчика концентрации кислорода. После каждого рабочего цикла клапан вентиляции топливного бака остается закрытым примерно в течение 30 с.

При этом происходит корректировка холостого хода, если двигатель работает на холостом ходу. После остановки двигателя клапан вентиляции остается под напряжением, т.е. закрытым в течение 3 с для предотвращения самовоспламенения рабочей смеси после выключения зажигания. Затем при неработающем двигателе (клапан вентиляции обесточен) закрывается пружинный обратный клапан. Тем самым прекращается поступление паров топлива во впускной коллектор.

Когда температура наружного воздуха повышена или в случае превышения нормальной температуры охлаждающей жидкости контроллер вырабатывает команды на смещение угла опережения зажигания в сторону запаздывания для предотвращения детонации.

В системе "Motronic 3.1" предусмотрена защита нейтрализатора отработавших газов. Отклонения от нормальной работы первичной цепи системы зажигания обнаруживаются контроллером, который выключает форсунку неисправного цилиндра. Благодаря этому предотвращается поступление несгоревшей рабочей смеси в нейтрализатор.

На двигателях с системой "Motronic 3.1", содержание СО в отработавших газах не регулируются. Винтов качества и количества в системе холостого хода нет вообще.



2019-07-03 201 Обсуждений (0)
Объединенные системы впрыска и зажигания 0.00 из 5.00 0 оценок









Обсуждение в статье: Объединенные системы впрыска и зажигания

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как распознать напряжение: Говоря о мышечном напряжении, мы в первую очередь имеем в виду мускулы, прикрепленные к костям ...
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (201)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)