Мегаобучалка Главная | О нас | Обратная связь


Перспективы каталитической очистки газовых выбросов



2019-07-03 191 Обсуждений (0)
Перспективы каталитической очистки газовых выбросов 0.00 из 5.00 0 оценок




 

Анализ экологической ситуации на данный момент показывает, что важнейшими проблемами на планете являются смог и выбросы, способствующие образованию кислотных дождей. Последние обусловлены содержанием в атмосфере SO2, NOx, CO и некоторых углеводородов, проявляющих высокую химическую активность. Глобальную экологическую проблему представляет собой парниковый эффект, являющийся причиной общего потепления на планете. Газы, обусловливающие парниковый эффект, такие, как СО2, СН4, NOx, хлор- и фторуглеводороды, стабильны; они диффундируют и накапливаются в атмосфере. В соответствии с моделью системы управления окружающей средой представленной в [1], важным экологическим аспектом является нормализация качества атмосферного воздуха. Согласно работам [2], уровень загрязнения окружающей среды в настоящее время в полной мере зависит от успехов исследований в области экологического катализа и уровня технологического воплощения имеющихся разработок. Одной из принципиальных задач является проведение систематических исследований в данной области с целью получения экологических катализаторов.

Приоритет в экологическом катализе в 90-х годах отдан получению и модификации полиметаллических композиций для удаления из промышленных и транспортных газовых выбросов NOx и летучих органических соединений. Следует отметить, что особое значение приобретает очистка дизельных выбросов. Создаваемые катализаторы должны обеспечивать не только удаление конкретных экологически вредных компонентов из газового потока, но и превращение их в экологически чистые соединения: О2, N2, водяной пар и СО2. В то же время необходимо, чтобы они были химически стабильными в реальных рабочих условиях (широкий интервал температур, объемных скоростей и концентраций), устойчивыми по отношению к каталитическим ядам и не представляли потенциальный опасности для окружающей среды (выброс мелкодисперсных частиц металлов или их токсичных производных).

Существует два каталитических способа удаления NOx из газовых выбросов: разложение на О2 и N2 и селективное восстановление. Большинство разработок каталитических систем для селективного восстановления оксидов азота базируется на использовании благородных металлов и оксидов неблагородных металлов. Однако при использовании уже известных катализаторов процесса восстановления возникает несколько проблем, решение которых заставляет разрабатывать новые эффективные и достаточно дешевые катализаторы.

Практический интерес для процессов технического и экологического катализа представляют соединения АВО3 со структурой перовскита СаТiO3.

Методы получения перовскитов были аналогичны описанным в работах.

Восстановление оксида азота(II) проводили на установке проточного типа при объемной скорости 2000ч-1. Объем катализатора составлял 1,5 см3. Исходная газовая смесь имела состав (об%):

 

NO - 0.16, NH3 – 11, О2 – 12.6, N2 – 75.24

 

Продукты реакции анализировали газохроматографическим методом. Процесс восстановления оксида азота (II) на перовскитах осуществлялся по реакции:

 

4NO + 4NH3 + O2 = 4N2 + 6H2O

 


Таблица 1

Конверсия α NOx на перовскитах ряда LnAlO3 (Ln – La, Pr, Nd, Sm)

Катализатор Значение α, % при температуре 4500 С
LaAlO3 PrAlO3 NdAlO3 SmAlO3 37 41 45 52

 

Анализ данных, представленных в таблице 1 показал, что на каталитическую активность перовскитов значительное влияние оказывает варьирование металла из семейства лантаноидов. Из исследованных перовскитов ряда LnAlO3 (где Ln – La, Pr, Nd, Sm) наибольшей активностью обладал SmAlO3. Было установлено [6], что активным центром, который определяет каталитическую активность перовскита и его термостабильность, является не только ион переходного металла. Перовскиты - нестехиометрические соединения с различным содержанием кислорода, поэтому такими дополнительными центрами могут быть вакансии по кислороду, образующиеся в результате искажения идеальной кубической структуры типа СаТiO3. Например, в перовскитах с лантаноидами в позиции катиона А искажения уменьшаются от гадолиния до лантана в любом ряду с постоянным радиусом иона переходного металла [7].

Полученные результаты исследования делают актуальной возможность использования перовскитов в качестве катализаторов процесса селективного восстановления оксида азота.

 

Задача

 

При крашении одежды в цвет бордо в химически последовательно используют две ваннах с растворами красителя, состав которых в граммах следующий (из расчета на 16 кг одежды):


Краситель                         свежая ванна           вторая ванна

Прямой бордо                           500                           430

Поваренная соль                                 1000                         600

Кальцинированная сода           85                             40

 

Сколько каждого компонента в совокупности по двум ваннам, требуется для крашения 100 кг одежды. Каковы процентные концентрации компонентов каждой ванны в отдельности по отношению к одежде.

 

Решение

 

Найдем содержание компонентов свежей ванны по отношению к одежде:

А) Краситель бордо

 

16000 г – 100 %

500 г – х

х = 3,125 %

 

б) Поваренная соль

 

16000 г – 100 %

1000 г – х

х = 6,250 %

 

в) Кальцинированная сода

 

16000 г – 100 %

85 г – х

х = 0,531 %

Рассчитаем также для второй ванны:

А) Краситель бордо

 

16000 г – 100 %

430 г – х

х = 2,687 %

 

б) Поваренная соль

 

16000 г – 100 %

600 г – х

х = 3,750 %

 

в) Кальцинированная сода

 

16000 г – 100 %

40 г – х

х = 0,250 %

 

2. Найдем сколько каждого компонента в совокупности по каждой ванне потребуется на 100 кг одежды:

 

А) Краситель бордо 3,125 + 2,687 = 5,812 %

100 г – 100 %

х г – 5,812 %

х = 5,812 кг

 

б) Поваренная соль 6,250 + 3,750 = 10 %

100 г – 100 %

х г – 10 %

х = 10 кг

 

в) Кальцинированная сода 0,531 + 0,250 = 0,781 %

100 г – 100 %

х г – 0,781 %

х = 0,78 кг

 

Ответ: для крашения 100 кг одежды необходимо красителя бордо - 5,812 кг, поваренной соли – 10 кг, кальцинированной соды – 0,76 кг.

 


Выводы

 

Каталитические методы очистки газов применяют часто для предварительной очистки технологических газов.

Каталитические методы газоочистки основаны на взаимодействии примесей с другими газообразными компонентами в присутствии катализатора преимущественно при 300-400 °С и высоких объемных скоростях газа (5*10-3-105 ч-1). Катализаторы - оксиды Fe, Cr, Cu, Zn, Со, Pt, Pd и др., которые наносят на носитель, имеющий развитую поверхность или на металлические материалы (проволоку, сетку, ленту из легиров. стали, Ti, анодиров. А1 и т.п.); активные боксит и уголь, цеолиты, гопкалит (марганцевомедный катализатор.) и др. Процесс газоочистки проводят, как правило, с неподвижным слоем катализатора. Для большинства катализаторов во избежание их забивки содержание инертных твердых примесей в газе не должно превышать 15 мг/м3.

К каталитическим методам газоочистки относятся окисление примесей с применением О2 и их восстановление так называемым газом-восстановителем (гидрирование при использовании Н2). Окисляют обычно: кислородсодержащие органические соединения до СО2 и Н2О, например спирты и эфиры.

Каталитическая очистка газов с применением газа-восстановителя предназначена для гидрирования сераорганических соединений в H2S в производстве H2S (кобальтмолибденовый кат. при 300-400 °С) с последующим улавливанием образовавшегося H2S оксидом Zn или после охлаждения газа растворами алканоламинов; восстановления метаном и конвертированным природным газом SO2 и паров S в H2S с его селективным извлечением в производстве серы (кобальтмолибденовый или никельмолибденовый катализатор при 300-450 °С); восстановления до N2 оксидов азота, например отходящих газов производства HNO3, с помощью СН4 или Н2 (при 800-900 °С), которые одновременно связывают О2, содержащийся в газе, в СО2 и Н2О, или селективного восстановления с использованием NH3 (при 200-270 °С) в присутствии катализаторов на основе Pt или Pd.

 


Список литературы

 

Глинка Н.Л. Общая химия. Изд. 17-е, испр. - Л.: "Химия", 1975. - 728 с.

Кузнецов В.В., Усть-Качкинцов В.Ф. Физическая и коллоидная химия. Учеб. пособие для вузов. - М.: Высш. школа, 1976. - 277 с.

Носков А.С, Пай З.П. Технологические методы защиты атмосферы от вредных выбросов на предприятиях энергетики. Новосибирск, СО РАН, ГПНТБ, 1996, 156 с.

Основы химической технологии: Учебник для студентов хим.-технол.спец. вузов / И.П. Мухленов, А.Е. Горштейн, Е.С. Тумаркина; Под ред. И.П. Мухленова. - 4-е изд., перераб. и доп. - М.: Высш. школа, 1991. - 463 с.

Попова Н.М. Катализаторы очистки газовых выбросов промышленных производств.- М.: Химия, 1991.

Успехи химии и технологии редкоземельных элементов. - М.: Металлургия, 1970.



2019-07-03 191 Обсуждений (0)
Перспективы каталитической очистки газовых выбросов 0.00 из 5.00 0 оценок









Обсуждение в статье: Перспективы каталитической очистки газовых выбросов

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (191)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.009 сек.)