Мегаобучалка Главная | О нас | Обратная связь


Механизм питания бактерий



2019-08-13 278 Обсуждений (0)
Механизм питания бактерий 0.00 из 5.00 0 оценок




  1. Наиболее простой способ — пассивная диффузия, при которой поступление вещества в клетку происходит из-за различия градиента концентрации (разницы концентрации по обе стороны цитоплазматической мембраны).
  2. Одним из таких механизмов является облегченная диффузия, которая происходит при большей концентрации вещества вне клетки, чем внутри. Облегченная диффузия — процесс специфический и осуществляется особыми мембранными белками, переносчиками, получившими название п е р м е а з, так как они выполняют функцию ферментов и обладают специфичностью. Они связывают молекулу вещества, переносят в неизмененном виде к внутренней поверхности цитоплазматической мембраны и высвобождают в цитоплазму. Так как перемещение вещества происходит от более высокой концентрации к более низкой, этот процесс протекает без затраты энергии.
  3. Третий возможный механизм транспорта веществ поучил название активного переноса. Этот прессе наблюдается при низких концентрациях субстрата в окружающей среде и перенос растворенных веществ также в неизмененном виде осуществляется против градиента концентрации. В активном переносе веществ участвуют пермеазы. Поскольку концентрация вещества в клетке может в несколько тысяч раз превышать ее во внешней среде, активный перенос обязательно сопровождается затратой энергии. Расходуется аденозинтрифосфат (АТФ), накапливаемый бактериальной клеткой при окислительно-восстановительных процессах.
  4. при четвертом возможном механизме переноса питательных веществ наблюдается транслокация радикалов — активный перенос химически измененных молекул, которые в целом виде не способны проходить через мембрану. В переносе радикалов участвуют пермеазы.

 

№28 Основные принципы культивирования бактерий.

 

№29 Искусственные питательные среды, их классификация. Требования, предъявляемые к питательным средам.

         
   

№30 Дифференциально-диагностические питательные среды. Принципы идентификации бактерий.

Среды см. 29

Определение вида возбудителя по его биохимическим свойствам называется биохимической идентификацией.

С целью установления видовой принадлежности бактерий часто изучают их антигенное строение, то есть проводят идентификацию по антигенным свойствам. Каждый микроорганизм имеет в своем составе разные антигенные субстанции. В частности, представители семьи энтеробактерий (ешерихии, сальмонели, шигелы) содержат оболочковый О-антиген, жгутиковий Н-антиген и капсульный К-антиген. Они неоднородны своим химическим составом, потому существуют во многих вариантах. Их можно определить с помощью специфических аглютинуючих сывороток. Такое определение вида бактерий носит название серологической идентификации.

Иногда идентификацию бактерий проводят, заражая лабораторных животных чистой культурой и наблюдая за теми изменениями, которые вызывают возбудители в организме (туберкулез, ботулизм, столбняк, сальмонеллез и тому подобное). Такой метод называют идентификацией по биологическими свойствам. Как объекты – чаще всего используют гвинейских свинок, белых мышей и крыс.

 

 

№32 Химические и биологические методы выделения чистых культур бактерий.

Чистой культурой называется популяция бактерий од­ного вида или одной разновидности, выращенная на питательной среде. Многие виды бактерий подразделяют по одному признаку на биологические варианты — биовары. Биовары, различающие­ся по биохимическим свойствам, называют хемоварами, по анти­генным свойствам — сероварами, по чувствительности к фагу — фаговарами. Культуры микроорганизмов одного и того же вида, или биовара, выделенные из различных источников или в разное время из одного и того же источника, называют штаммами, которые обычно обозначаются номерами или какими-либо сим­волами. Чистые культуры бактерий в диагностических бактерио­логических лабораториях получают из изолированных колоний, пересевая их петлей в пробирки с твердыми или, реже, жидкими питательными средами.

Колония представляет собой видимое изолированное скоп­ление особей одного вида микроорганизмов, образующееся в результате размножения одной бактериальной клетки на плотной питательной среде (на поверхности или в глубине ее). Колонии бактерий разных видов отличаются друг от друга по своей мор­фологии, цвету и другим признакам.

Чистую культуру бактерий получают для проведения диагно­стических исследований — идентификации, которая достигается путем определения морфологических, культуральных, биохимиче­ских и других признаков микроорганизма.

Морфологические и тинкториальные признаки бактерий изучают при микроскопическом исследовании мазков, окрашенных разными методами, и нативных препаратов.

Культуральные свойства характеризуются питатель­ными потребностями, условиями и типом роста бактерий на плот­ных и жидких питательных средах. Они устанавливаются по мор­фологии колоний и особенностям роста культуры.

Биохимические признаки бактерий определяются на­бором конститутивных и индуцибельных ферментов, присущих определенному роду, виду, варианту. В бактериологической прак­тике таксономическое значение имеют чаще всего сахаролитические и протеолитические ферменты бактерий, которые определя­ют на дифференциально-диагностических средах.

При идентификации бактерий до рода и вида обращают вни­мание на пигменты, окрашивающие колонии и культуральную среду в разнообразные цвета. Например, красный пигмент обра­зуют Serratia marcescens, золотистый пигмент — Staphylococcus aureus (золотистый стафилококк), сине-зеленый пигмент — Pseu-domonas aeruginosa.

Для установления биовара (хемовара, серовара, фаготипа) проводят дополнительные исследования по выялвениб соответствующего маркера – определению фермента, антигена, чувствительности к Фанам.

Методы выделения чистых культур бакте­рий.

Универсальным инструментом для производства посевов явля­ется бактериальная петля. Кроме нее, для посева уколом при­меняют специальную бактериальную иглу, а для посевов на чашках Петри — металлические или стеклянные шпатели. Для посевов жидких материалов наряду с петлей используют пасте­ровские и градуированные пипетки. Первые предварительно из­готовляют из стерильных легкоплавких стеклянных трубочек, которые вытягивают на пламени в виде капилляров. Конец ка­пилляра сразу же запаивают для сохранения стерильности. У пастеровских и градуированных пипеток широкий конец за­крывают ватой, после чего их помещают в специальные пеналы или обертывают бумагой и стерилизуют.

При пересеве бактериальной культуры берут пробирку в левую руку, а правой, обхватив ватную пробку IV и V пальцами, вынимают ее, пронося над пламенем горелки. Удерживая дру­гими пальцами той же руки петлю, набирают ею посевной ма­териал, после чего закрывают пробирку пробкой. Затем в пробирку со скошенным агаром вносят петлю с посевным материалом, опуская ее до конденсата в нижней ча­сти среды, и зигзагообразным движением распределяют мате риал по скошенной поверхности агара. Вынув петлю, обжигают край пробирки и закрывают ее пробкой. Петлю стерилизуют в пламени горелки и ставят в штатив. Пробирки с посевами надг писывают, указывая дату посева и характер посевного мате­риала (номер исследования или название культуры).

Посевы «газоном» производят шпателем на питательный агар в чашке Петри. Для этого, приоткрыв левой рукой крышку, пет­лей или пипеткой наносят посевной материал на поверхность питательного агара. Затем проводят шпатель через пламя горел­ки, остужают его о внутреннюю сторону крышки и растирают материал по всей поверхности среды. После инкубации посева появляется равномерный сплошной рост бактерий.

 

№33 Ферменты бактерий.

В основе всех метаболических реакций в бактериальной клетке лежит деятельность ферментов, которые принадлежат к 6 классам: оксиредуктазы, трансферазы, гидролазы, лигазы, лиазы, изомеразы. Ферменты, образуемые бактериальной клеткой, могут локализоваться как внутри клетки — эндоферменты, так и выделяться в окружающую среду — экзоферменты.

 Экзоферменты играют большую роль в обеспечении бактериальной клетки доступными для проникновения внутрь источниками углерода и энергии. Большинство гидролаз является экзоферментами, которые, выделяясь в окружающую среду, расщепляют крупные молекулы пептидов, полисахаридов, липидов до мономеров и димеров, способных проникнуть внутрь клетки.

Ряд экзоферментов, например гиалуронидаза, коллагеназа и другие, являются ферментами агрессии. Некоторые ферменты локализованы в периплазматическом пространстве бактериальной клетки. Они участвуют в процессах переноса веществ в бактериальную клетку. Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых случаях — для видов. Поэтому определением спектра ферментативной активности пользуются при установлении таксономического положения бактерий. Наличие экзоферментов можно определить при помощи дифференциально-диагностических сред, поэтому для идентификации бактерий разработаны специальные тест-системы, состоящие из набора дифференциально-диагностических сред.

 

№34 Особенности физиологии грибов.

 

     
 

№35 Особенности физиологии простейших.

 

№36 Типы взаимодействия вируса с клеткой. Стадии репродукции вирусов.

 Различают три типа взаимодействия вируса с клеткой: продуктивный, абортивный и интегративный. Продуктивный тип— завершается образованием нового поколения вирионов и гибелью (лизисом) зараженных клеток (цитолитическая форма). Некоторые вирусы выходят из клеток, не разрушая их (нецитолитическая форма).

Абортивный тип— не завершается образованием новых вирионов, поскольку инфекционный процесс в клетке прерывается на одном из этапов.

Интегративный тип, или вирогения — характеризуется встраиванием (интеграцией) вирусной ДНК в виде провируса в хромосому клетки и их совместным сосуществованием (совместная репликация).

Репродукция осуществляется рядом последовательных стадий:

1) Адсорбция вирусов (прикрепление) – высокоспецифичный процесс, происходит на рецептора клетки (белки, липиды, углеродных компоненты белков и липидов) – от 10^4 до 10^5 на клетку.

2) Проникновение вируса в клетку: а) виропексис – образование внутриклеточной вакуоли с вирусом; б) слияние вирусной оболочки с клеточной мембраной.

3) «Раздевание» и высвобождение вирусного генома – в несколько этапов в определенных частях клетки под действием специфических ферментов => сердцевина, нуклеокапсид и НК вируса

4) Биосинтез вирусных компонентов: НК вируса конкурирует с генетической информацией клетки => дезорганизация работы клеточной системы, синтез новых вирусных белков и НК в соответствии с процессами транскрипции, трансляции и репликации.

5) Формирование вирионов: «специфическое узнавание»; 1) многоступенчатый процесс; 2) НК+капсульные белки = нуклеокапсид (+белки суперкапсида); 3) происходит на ядерной или цитоплазматической мембране; 4) сложноустроенные включают компоненты клетки хозяина

6) Выход вирионов из клетки: 1) Взрывной – одновременный выход большого числа вирионов; 2) Почкование.

 

№37 Бактериофаги. Взаимодействие фага с бактериальной клеткой. Умеренные и вирулентные бактериофаги. Лизогения.

Бактериофаги — вирусы бактерий, обладающие способностью специфически проникать в бактериальные клетки, репродуцироваться в них и вызывать их растворение (лизис).

По механизму взаимодействия различают вирулентные и умеренные фаги. Вирулентные фаги, проникнув в бактериальную клетку, автономно репродуцируются в ней и вызывают лизис бактерий. Процесс взаимодействия вирулентного фага с бактерией протекает в виде нескольких стадий и весьма схож с процессом взаимодействия вирусов человека и животных с клеткой хозяина. Однако для фагов, имеющих хвостовой отросток с сокращающимся чехлом, он имеет особенности. Эти фаги адсорбируются на поверхности бактериальной клетки с помощью фибрилл хвостового отростка. В результате активации фагового фермента АТФазы происходит сокращение чехла хвостового отростка и внедрение стержня в клетку. В процессе «прокалывания» клеточной стенки бактерии принимает участие фермент лизоцим, находящийся на конце хвостового отростка. Вслед за этим ДНК фага, содержащаяся в головке, проходит через полость хвостового стержня и активно впрыскивается в цитоплазму клетки. Остальные структурные элементы фага (капсид и отросток) остаются вне клетки. После биосинтеза фаговых компонентов и их самосборки в бактериальной клетке накапливается до 200 новых фаговых частиц. Под действием фагового лизоцима и внутриклеточного осмотического давления происходит разрушение клеточной стенки, выход фагового потомства в окружающую среду и лизис бактерии. Один литический цикл (от момента адсорбции фагов до их выхода из клетки) продолжается 30—40 мин.

Умеренные фаги лизируют не все клетки в популяции, с частью из них они вступают в симбиоз, в результате чего ДНК фага встраивается в хромосому бактерии. В таком случае геномом фага называют профаг. Профаг, ставший частью хромосомы клетки, при ее размножении реплицируется синхронно с геном бактерии, не вызывая ее лизиса, и передается по наследству от клетки к клетке неограниченному числу потомков. Биологическое явление симбиоза микробной клетки с умеренным фагом (профагом) называется лизогенией, а культура бактерий, содержащая профаг, получила название лизогенной.

Это название отражает способность профага самопроизвольно или под действием ряда физических и химических факторов исключаться из хромосомы клетки и переходить в цитоплазму, т. е. вести себя как вирулентный фаг, лизирующий бактерии. Лизогенные культуры по своим основным свойствам не отличаются от исходных, но они невосприимчивы к повторному заражению гомологичным или близкородственным фагом и, кроме того, приобретают дополнительные свойства, которые находятся под контролем генов профага. Изменение свойств микроорганизмов под влиянием профага получило название фаговой конверсии. Последняя имеет место у многих видов микроорганизмов и касается различных их свойств: культуральных, биохимических, токсигенных, антигенных, чувствительности к антибиотикам и др. Кроме того, переходя из интегрированного состояния в вирулентную форму, умеренный фаг может захватить часть хромосомы клетки и при лизисе последней переносит эту часть хромосомы в другую клетку. Если микробная клетка станет лизогенной, она приобретает новые свойства. Таким образом, умеренные фаги являются мощным фактором изменчивости микроорганизмов.

 

№38 Методы культивирования вирусов.

Для культивирования вирусов используют культуры клеток, куриные эмбрионы и чувствительных лабораторных животных.

Культуры подразделяют на первичные (неперевиваемые), полуперевиваемые и перевиваемые. Приготовление первичной культуры клеток складывается из нескольких последовательных этапов: измельчения ткани, разъединения клеток путем трипсинизации, отмывания полученной однородной суспензии изолированных клеток от трипсина с последующим суспендированием клеток в питательной среде, обеспечивающей их рост, например в среде 199 с добавлением телячьей сыворотки крови.

Перевиваемые культуры в отличие от первичных адаптированы к условиям, обеспечивающим им постоянное существование invitro, и сохраняются на протяжении нескольких десятков пассажей. Перевиваемые однослойные культуры клеток приготовляют из злокачественных и нормальных линий клеток, обладающих способностью длительно размножаться invitro в определенных условиях. К ним относятся злокачественные клетки HeLa, первоначально выделенные из карциномы шейки матки, Нер-3 (из лимфоидной карциномы), а также нормальные клетки амниона человека, почек обезьяны и др.

К полуперевиваемым культурам относятся диплоидные клетки человека. Они представляют собой клеточную систему, сохраняющую в процессе 50 пассажей (до года) диплоидный набор хромосом, типичный для соматических клеток используемой ткани. Диплоидные клетки человека не претерпевают злокачественного перерождения и этим выгодно отличаются от оопухолевых

Методы: 1) Реакция гемадсорбции; 2) Реакция гемагглютинации; 3) Метод бляшек

 


№39 Нормальная микрофлора ЖКТ организма человека и ее функции.

№40 Формы взаимоотношений между микроорганизмами.

Животные и растения, грибы и бактерии существуют не изолированно друг от друга, а вступают в сложные взаимоотношения. Различают несколько форм взаимодействия популяций.

 

№41 Микрофлора кожи человека

 

№42 Микрофлора ротовой полости.


 

№43 Микрофлора воздуха и методы ее исследования. Санитарно-показательные микроорганизмы воздуха.

Микрофлора воздуха и методы ее исследования. Микробиологический контроль воздуха проводится с помощью методов естественной или принудительной седиментации микробов. Естественная седиментация (по методу Коха) проводится в течение 5—10 мин путем осаждения микробов на поверхность твердой питательной среды в чашке Петри. Принудительная седиментация микробов осуществляется путем «посева» проб воздуха на питательные среды с помощью специальных приборов (импакторов, импинджеров, фильтров). Импакторы — приборы для принудительного осаждения микробов из воздуха на поверхность питательной среды (прибор Кротова, пробоотборник аэрозоля бактериологический и др.). Импшджеры — приборы, с помощью которых воздух проходит через жидкую питательную среду или изотонический раствор хлорида натрия.

Санитарно-гигиеническое состояние воздуха определяется по следующим микробиологическим показателям: 1. Общее количество микроорганизмов в 1 м3 воздуха (так называемое общее микробное число, или обсемененность воздуха) — количество колоний микроорганизмов, выросших при посеве воздуха на питательном агаре в чашке Петри в течение 24 ч при 37 °С, выраженное в КОЕ; 2. Индекс санитарно-показательных микробов— количество золотистого стафилококка и гемолитических стрептококков в 1 м 3 воздуха. Эти бактерии являются представителями микрофлоры верхних дыхательных путей и имеют общий путь выделения с патогенными микроорганизмами, передающимися воздушно-капельным путем. Появление в воздухе спорообразу-ющих бактерий — показатель загрязненности воздуха микроорганизмами почвы, а появление грамотрицательных бактерий — показатель возможного антисанитарного состояния. Для оценки воздуха лечебных учреждений можно использовать данные из официально рекомендованных нормативных документов.

Автохтонной флоры нет. В закрытых помещениях – гемолитический стрептококк, золотистый стафилококк, возбудитель туберкулеза.

№44. Методы санитарно-биологического исследования воды. Показатели качества воды: микробное число, коли-индекс.

Загрязненность воды определяется по общей микробной обсемененности и обнаружению санитарно-показательных микроорганизмов — индикаторов наличия выделений человека или животных. В воде регистрируют кишечную палочку, БГКП (колиформные палочки), энтерококк, стафилококки; На основании количественного выявления этих санитарно-показательных бактерий вычисляются индекс БГКП (число БГКП в 1 л воды), перфрингенс-титр, титр энтерококка и т.д. Так, например, титр энтерококка воды — это наименьшее количество воды, в котором определяется энтерококк. К бактериям группы кишечной палочки относят грамотрицательные палочки, сбраживающие с образованием кислоты и газа лактозу или глюкозу при температуре 37°С в течение 24-48 ч и не обладающие оксидазной активностью. Наиболее часто этот показатель применяют как индикатор фекального загрязнения воды.

Отбор проб 10-15 см от дна и 10-15 см от поверхности; водопроводная – 0,5 л, кран предварительно обжечься и спустить воду 10-15 минут.    1 мл + 10-12 мл угара, 37°, 1-2 суток. Из открытых водоёмов: 37° - 1 сутки и 20° - 2 суток.

МИКРОБНОЕ ЧИСЛО — общее количество микроорганизмов, содержащееся в единице объёма или массы (1 см3 воды, 1г почвы, 1м3 воздуха)

Коли-индекс – количество БГКП, содержащееся в 1л воды.

 

№ 45. Санитарно-микробиологическое исследование почвы. Микробное число, коли-титр, перфингенс-титр почвы.

Почва: сальмонеллы, шигеллы, возбудители столбняка, ботулизма, сибирской язвы.

МИКРОБНОЕ ЧИСЛО — общее количество микроорганизмов, содержащееся в единице объёма или массы (1 см3 воды, 1г почвы, 1м3 воздуха)

Коли-титр – минимальное количество почвы, в которой обнаружены БКП. 1 мл в пробирку со средой Кесслера – 43°, 48ч.

ПЕРФРИНГЕНС-ТИТР ПОЧВЫ - наименьшее количество почвы в граммах, в котором определяется хоть одна жизнеспособная клетка возбудителя газовой гангрены - Cl. perfringens. 1 мл на среду Вильсона-Блера, 43°, 1-2 суток.

Отбор проб с территории до 1000м2: выделяют 2 участка по 25м2, с каждого берут пробы из 5 точек (из углов и из центра) на глубине 10-20 см стерильным совком, по 200-300г

Затем землю каждого из участков смешивают. Берут по 30г в 500 мл колбу, добавляют по 270 мл стерильной воды, проводят серию из 10 разведений ( 10 пробитой по 9 мл, в первую +1 мл из колбы, далее по +1 мл из предыдущих пробирок). 1ая: 1:100, 2ая 1:1000 итд.

Последние 3-4 пробирки по 1 мл + 10-15 мл МПА, 37°, 1-2 сут. Подсчитать, умножить на степень разведения, вычислить среднее арифметическое.

 

№46 Дисбиозы. Дисбактериозы.

Состояние эубиоза — динамического равновесия нормальной микрофлоры и организма человека — может нарушаться под влиянием факторов окружающей среды, стрессовых воздействий, широкого и бесконтрольного применения антимикробных препаратов, лучевой терапии и химиотерапии, нерационального питания, оперативных вмешательств и т. д. В результате нарушается колонизационная резистентность. Аномально размножившиеся транзиторные микроорганизмы продуцируют токсичные продукты метаболизма — индол, скатол, аммиак, сероводород. Состояния, развивающиеся в результате утраты нормальных функций микрофлоры, называются дисбактериозом и дисбиозом.

 

При дисбактериозе происходят стойкие количественные и качественные изменения бактерий, входящих в состав нормальной микрофлоры. При дисбиозе изменения происходят и среди других групп микроорганизмов (вирусов, грибов и др.).


 

№47 Препараты, применяемые для коррекции дисбиотических состояний

 


     
 

№48 Действие физических и химических факторов на микроорганизмы. Понятие о стерилизации, дезинфекции, асептике и антисептике.

 

Стерилизация – предполагает полную инактивацию микробов в объектах, подвергшихся обработке. Дезинфекция — процедура, предусматривающая обработку загрязненного микробами предмета с целью их уничтожения до такой степени, чтобы они не смогли вызвать инфекцию при использовании данного предмета. Как правило, при дезинфекции погибает большая часть микробов (в том числе все патогенные), однако споры и некоторые резистентные вирусы могут остаться в жизнеспособном состоянии.

Асептика – комплекс мер, направленных на предупреждение попадания возбудителя инфекции в рану, органы больного при операциях, лечебных и диагностических процедурах. Методы асептики применяют для борьбы с экзогенной инфекцией, источниками которой являются больные и бактерионосители.

Антисептика – совокупность мер, направленных на уничтожение микробов в ране, патологическом очаге или организме в целом, на предупреждение или ликвидацию воспалительного процесса.

 

№ 49 Санитарно-показательные микроорганизмы. Требования, предъявляемые к ним.

Санитарная микробиология— раздел медицинской микробиологии, изучающий микроорганизмы, содержащиеся в окружающей среде и способные оказывать неблагоприятное воздействие на состояние здоровья человека.

Санитарно-показательные микроорганизмы должны отвечать следующим основным требованиям: 1. должны обитать только в организме людей или животных и постоянно обнаруживаться в их выделениях; 2. не должны размножаться или обитать в почве и воде; 3. сроки их выживания и устойчивость к различным факторам после выделения из организма в окружающую среду должны быть равными или превышать таковые у патогенных микробов; 4. их свойства должны быть типичными и легко выявляемыми для их дифференциации; 5. методы их обнаружения и идентификации должны быть простыми, методически и экономически доступными; 6. должны встречаться в окружающей среде в значительно больших количествах, чем патогенные микроорганизмы; 7. в окружающей среде не должно быть близко сходных обитателей — микроорганизмов

 

 

     
 

№50 Строение генома бактерий. Понятие о генотипе и фенотипе. Виды изменчивости.

 

 

 

№51 Механизмы передачи генетического материала у бактерий.

Конъюгация – передача генетической информации от клетки-донора в клетку-реципиент путем непосредственного контакта клеток. Необходимым условием для конъюгация является наличие в клетки-донора трансмиссивной плазмиды. См. 57

Трансдукция – передача бактериальных ДНК посредством бактериофаги. См. 56

Трансформирующей активностью обладает только двунитчатая высокоспирализованная молекула ДНК.  См. 55

 

№52 Внехромосомные факторы наследственности.

     
 

Внехромосомные факторы наследственности бактерий представлены плазмидами и эписомами. Эти генетические структуры представлены ДНК, которая способна самостоятельно реплицироваться.

 

№53 Мутации. Понятие. Классификация по фенотипическим последствиям. Прямые и обратные.

Мутации- внезапно возникающие естественные (спонтанные) или вызываемые искусственно (индуцированные) стойкие изменения наследственных структур живой материи, ответственных за хранение и передачу генетической информации

 


 

№54 Мутации. Понятие. Классификация по происхождению и протяженности

Мутации- внезапно возникающие естественные (спонтанные) или вызываемые искусственно (индуцированные) стойкие изменения наследственных структур живой материи, ответственных за хранение и передачу генетической информации.

В зависимости от происхождения различают спонтанные и индуцированные мутации.

Спонтанные мутации (самопроизвольное изменение в совокупности генов организма данного вида) – те мутации, которые возникают у организмов в нормальных природных условиях без видимых причин; они возникают как ошибки при воспроизведении генетического материала, поскольку редупликация не происходит с абсолютной точностью. Длительное время считалось, что спонтанные мутации являются беспричинными. Сейчас же пришли к выводу, что они являются результатом естественных процессов, протекающих в клетках. Они возникают в условиях природного радиоактивного фона Земли в виде космического излучения, радиоактивных элементов на поверхности Земли, радионуклидов в клетках организмов. Спонтанная мутация может возникнуть в любой период индивидуального развития и поразить любую хромосому или ген. Частота встречаемости спонтанных мутаций, например, 1:100000.

Индуцированныемутации возникают в результате действия мутагенов, нарушающих процессы, происходящие в клетке.

По протяженности повреждений мутации бывают точечными, когда повреждения ограничиваются одной парой нуклеотидов, ипротяженными (аберрации). В этом случае может наблюдаться выпадение нескольких пар нуклеотидов (делеция), добавление нуклеотидных пар (дупликация) или поворот участка ДНК на 180° (инверсия).

 

 

№55 Рекомбинации у бактерий. Трансформация

Трансформация заключа­ется в том, что ДНК, выделенная из бактерий в свободной ра­створимой форме, передается бактерии-реципиенту. При транс­формации рекомбинация происходит, если ДНК бактерий род­ственны друг другу. В этом случае возможен обмен гомологич­ных участков собственной и проникшей извне ДНК. Впервые явление трансформации описал Ф. Гриффите (1928). Он вводил мышам живой невирулентный бескапсульный R-штамм пневмо­кокка и одновременно убитый вирулентный капсульный S-штамм пневмококка. Из крови погибших мышей был выделен вирулен­тный пневмококк, имеющий капсулу убитого S-штамма пнев­мококка. Таким образом, убитый S-штамм пневмококка передал наследственную способность капсулообразования R-штамму пнев­мококка. О. Эвери, К. Мак-Леод и М. Мак-Карти (1944) дока­зали, что трансформирующим агентом в этом случае является ДНК. Путем трансформации могут быть перенесены различные признаки: капсулообразование, устойчивость к антибиотикам, синтез ферментов.

Изучение бактериальной трансформации позволило установить роль ДНК как материального субстрата наследственности. При изучении генетической трансформации у бактерий были разра­ботаны методы экстракции и очистки ДНК, биохимические и биофизические методы ее анализа.

 

 

№56 Рекомбинации у бактерий. Трансдукция

 

Трансдукция — передача ДНК от бактерии-донора к бактерии-реципиенту при участии бактериофага. Различают неспецифическую (общую) трансдукцию, при которой возможен перенос любого фрагмен­та ДНК донора, и специфическую — перенос определен­ного фрагмента ДНК донора только в определенные участки ДНК реципиента. Неспецифическая трансдукция обусловлена включе­нием ДНК донора в головку фага дополнительно к геному фага или вместо генома фага (дефектные фаги). Специфическая транс­дукция обусловлена замещением некоторых генов фага генами хромосомы клетки-донора. Фаговая ДНК, несущая фрагменты хромосомы клетки-донора, включается в строго определенные участки хромосомы клетки-реципиента. Таким образом, привно­сятся новые гены и ДНК фага в виде профага репродуцируется вместе с хромосомой, т.е. этот процесс сопровождается лизоге-нией. Если фрагмент ДНК, переносимый фагом, не вступает в рекомбинацию с хромосомой реципиента и не реплицируется, но с него считывается информация
о синтезе соответствующего про­дукта, такая трансдукция называется абортивной.

     
 

 

 

№57 Рекомбинации у бактерий. Конъюгация

 

Конъюгация бактерий состоит в переходе генети­ческого материала (ДНК) из клетки-донора («мужской») в клет­ку-реципиент («женскую») при контакте клеток между собой.

Мужская клетка содержит F-фактор, или половой фактор, который контролирует синтез так называемых половых пилей, или F-пилей. Клетки, не содержа­щие F-фактора, являются женскими; при получении F-фактора они превращаются в «мужские» и сами становятся донорами. F-фактор располагается в цитоплазме в виде кольцевой двунитчатой молекулы ДНК, т. е. является плазмидой. Молекула F-фак­тора значительно меньше хромосомы и содержит гены, контро­лирующие процесс конъюгации, в том числе синтез F-пилей. При конъюгации F-пили соединяют «мужскую» и «женскую» клетки, обеспечивая переход ДНК через конъюгационный мостик или F-пили. Клетки, содержащие F-фактор в цитоплазме, обозначаются F+; они передают F-фактор клеткам, обозначае­мым F" («женским»), не утрачивая донорской способности, так как оставляют копии F-фактора. Если F-фактор включается в хромосому, то бактерии приобретают способность передавать фрагменты хромосомной ДНК и называются Hfr-клетками (от англ. high frequency of recombination — высокая частота реком­бинаций), т.е. бактериями с высокой частотой рекомбинаций. При конъюгации клеток Hfr и клеток F" хромосома разрывается и передается с определенного участка (начальной точки) в клет­ку F", продолжая реплицироваться. Перенос всей хромосомы может длиться до 100 мин.

Переносимая ДНК взаимодействует с ДНК реципиента — происходит гомологичная рекомбинация. Прерывая процесс конъ­югации бактерий, можно определять последовательность распо­ложения генов в хромосоме. Иногда F-фактор может при выхо­де из хромосомы захватывать небольшую ее часть, образуя так называемый замещенный фактор — F'.

 

При конъюгации происходит только частичный перенос ге­нетического материала, поэтому ее не следует отождествлять пол­ностью с половым процессом у других организмов.

 

 

№58 S-R диссоциация у бактерий. Отличия S и R форм по



2019-08-13 278 Обсуждений (0)
Механизм питания бактерий 0.00 из 5.00 0 оценок









Обсуждение в статье: Механизм питания бактерий

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Как выбрать специалиста по управлению гостиницей: Понятно, что управление гостиницей невозможно без специальных знаний. Соответственно, важна квалификация...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (278)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.017 сек.)