Мегаобучалка Главная | О нас | Обратная связь


Химическая связь в комплексных соединениях (основные тории)



2019-08-13 183 Обсуждений (0)
Химическая связь в комплексных соединениях (основные тории) 0.00 из 5.00 0 оценок




Основные положения «Координационной теории» Вернера

1. В любом комплексном соединении есть внутренняя и внешняя сфера.Внутренняя сфера называется «комплексным ионом» и заключается в квадратные скобки. В химических реакциях или в кристаллической структуре комплексный ион выступает как самостоятельная единица: K3[Fe(CN)6] ↔ 3K+ + [Fe(CN)6]3

2. Центральный атом внутренней сферы называется комплексообразователем (КО) или ядром комплекса. Роль комплексообразователя выполняют чаще всего катионы металлов, напр. [Fe(CN)6]3, [Co(NH3)6]2+, реже нейтр.атомы - Ni(CO)4 или анионы - [NH4]+.

3. Ионы или молекулы, которые координируются вокруг центрального атома во внутренней сфере, называются лигандами (от латинского liganda - «то, что связано») или аддендами (от латинского addenda - «то, что добавлено»).

4. Координационное число – это число лигандов, которое удерживается комплексообразователем. Координационное число обычно бывает больше, чем степень окисления КО:

Заряд центр.иона координац.число

+1 2

+2 4, 6

+3 6, 4

+4 8

Координационное число (к.ч.) зависит от: 1) природы КО и лигандов; 2) размеров КО и лигандов.

5.Число мест во внутренней сфере, которые занимает один лиганд, называется координационной емкостью лиганда. Монодентатный лиганд связан с комплексообразователем только одним из своих атомов: NH3, OH.

Бидентатный лиганд – двумя атомами: CO32-, SO42-, C2O42- и т.д.

Полидентатные лиганды связаны с комплексообразователем тремя и более атомами (например, ЭДТА занимает 6 мест во внутренней сфере).

6. Заряд комплексного иона численно равен алгебраической сумме зарядов всех составляющих его ионов. С другой стороны, заряд внутренней сферы равен по абсолютному значению и противоположен по знаку заряду внешней сферы.

В целом, комплексные соединения – электронейтральны.

Примеры:

 


x

а) [Co(NH3)6]Cl3 ↔ [Co(NH3)6]3+ + 3Cl

х + 6 · 0 = + 3

х = +3

х

б) K3[Fe(CN)6] ↔ 3K+ + [Fe(CN)6]3

х + 6 · (-1) = - 3;

х = 6 - 3 = +3

в) в нейтральных комплексах внешняя сфера отсутствует:

[Fe(CO)5]о ; [Xe(H2O)6]о

Так как лиганды являются нейтральными молекулами, следовательно, заряд комплексообразователя в данном случае равен нулю: q(Fe) = 0; q(Xe) = 0.

Изомерия комплексных соединений

1. Геометрическая изомерия. В тетраэдрических К.С. этот вид изомерии не наблюдается. В плоских квадратных комплексах состава МА2В2 наблюдается цис- и транс-изомерия. Подобная изомерия возможна также в октаэдрических комплексах состава МА4В2 и МА3В3.

При названии комплексов, способных к существованию в виде цис- и транс-изомеров, состветствующая структура указывается при помощи приставки, отделённой дефисом, перед названием соединения, например цис-дихлоротетрамминкобальта(+3) хлорид.

2. Ионизационная изомерия. Соединения, которые имеют одинаковый состав, но    образуют в растворе разные ионы, называют ионизационными изомерами.

3. Изомерия лигандов. Некоторые лиганды могут существовать в виде изомеров и входить в состав комплексов. Поскольку существуют 1,2-диаминопропан (pn) и 1,3-диаминопропан (tn), то могут быть изомерны и комплексы [Co(pn)2Cl2]Cl и [Co(tn)2Cl2]Cl.

4. Солевая изомерия. Такая изомерия наблюдается для лигандов, способных координироваться более чем одним способом. Наиболее известный пример - изомерия нитро- и нитрито-комплексов: [Co(NH3)5NO2]2+ - нитро-изомер и [Co(NH3)5ОNO]2+ - нитрито-изомер.

5. Координационная изомерия. В соединениях с комплексным катионом и комплексным анионом, распределение лигандов может меняться между координационными сферами, что приводит к образованию изомеров: [Co(NH3)6][Cr(CN)6] и [Cr(NH3)6][Co(CN)6]; [Co(NH3)6][Cr(C2O4)3] и [Cr(NH3)6][Co(C2O4)3].

6. Полимеризационные изомеры. Эти соединения не являются изомерами в строгом смысле слова, но их принято рассматривать с этой точки зрения. Они различаются по молекулярному весу, хотя обладают одинаковым эмпирическим составом. Примерами таких веществ являются: [Pt(NH3)2Cl2] и [Pt(NH3)4][PtCl4].

Химическая связь в комплексных соединениях (основные тории)

1. Электростатические представления (Коссель, Магнус, 1916-1922).

Взаимодействие между КО и ионными лигандами происходит по закону Кулона. Частицы КО и лиганда считаются «недеформируемыми» шарами с определенным зарядом и радиусом. Когда сила притяжения лиганда к КО уравновешивается силой отталкивания меду лигандами, тогда и образуется комплексное соединение.

Из закона Кулона следует:

1) чем больше заряд и чем меньше радиус КО и лиганда, тем прочнее комплекс;

а) в следующем ряду устойчивость ионов уменьшается: [AlCl4], [AlBr4], [AlI4].

б) Кнест([Cu(NH3)2]+) = 1011 больше, чем Кнест([Cu(NH3)4]2+ = 1013.

2) к.ч. комплексообразователя с ионными лигандами обычно меньше, чем к.ч. комплексообразователя с дипольными молекулами (т.к. силы отталкивания между ионами больше): [Co(CNS)4]2 и [Co(NH3)6]2+.

Основные недостатки теории: не может объяснить существование комплексных соединений с незаряженными лигандами; с комплексообразователем в нулевой степени окисления; не объясняет магнитные и оптические свойства комплексных соединений.

2. Метод валентных связей (МВС), (Полинг, 1930г.).

Основные положения:

1) связь к.о. и лиганда – донорно-акцепторная; к.о. должен иметь для образования ковалентных связей некоторое число вакантных орбиталей, определяющее его координационное число; орбитали лигандов точно не определяются; лиганды отдают в общее пользование электронную пару, к.о. – свободную орбиталь. Мерой прочности связи является степень перекрывания орбиталей.

2) Орбитали к.о. подвергаются гибридизации. Тип гибридизации обусловлен: числом лигандов; природой лигандов; электронным строением лигандов.


3) Дополнительную прочность комплексные соединения получают за счет π-связывания (электроны – от к.о., свободные π-орбитали – от лиганда).

4) Магнитные свойства определяют по заселенности орбиталей: есть неспаренные электроны, значит, комплекс обладает парамагнитными свойствами; нет неспаренных электронов – комплекс будет диамагнитным.

 

 

 

 



2019-08-13 183 Обсуждений (0)
Химическая связь в комплексных соединениях (основные тории) 0.00 из 5.00 0 оценок









Обсуждение в статье: Химическая связь в комплексных соединениях (основные тории)

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (183)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)